×

A non-intrusive method for the calculation of strict and efficient bounds of calculated outputs of interest in linear viscoelasticity problems. (English) Zbl 1169.74357

Summary: This paper presents a non-intrusive method which yields strict and high-quality error bounds of calculated quantities of interest in structural problems solved by the finite element method. The focus is on linear viscoelasticity problems described through internal variables. In order to solve the adjoint problem in a non-intrusive way, we use handbook techniques involving enrichment functions introduced through the partition of unity method (PUM). Then, the mesh and operators used to calculate the reference problem can be reused. Such a procedure also enables one to address error estimation on pointwise quantities of interest, although this implies dealing with infinite-energy Green functions.

MSC:

74D05 Linear constitutive equations for materials with memory
74S05 Finite element methods applied to problems in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Babus˘ka, I.; Strouboulis, T., The Finite Element Method and its Reliability (2001), Oxford University Press · Zbl 0997.74069
[2] Ladevèze, P.; Pelle, J.-P., Mastering Calculations in Linear and Nonlinear Mechanics (2004), Springer: Springer NY
[3] Paraschivoiu, M.; Peraire, J.; Patera, A. T., A posteriori finite element bounds for linear functional outputs of elliptic partial differential equations, Comput. Methods Appl. Mech. Engrg., 150, 289-312 (1997) · Zbl 0907.65102
[4] Cirak, F.; Ramm, E., A posteriori error estimation and adaptivity for linear elasticity using the reciprocal theorem, Comput. Methods Appl. Mech. Engrg., 156, 351-362 (1998) · Zbl 0947.74062
[5] Prudhomme, S.; Oden, J. T., On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors, Comput. Methods Appl. Mech. Engrg., 176, 313-331 (1999) · Zbl 0945.65123
[6] Ladevèze, P.; Rougeot, P.; Blanchard, P.; Moreau, J. P., Local error estimators for finite element linear analysis, Comput. Methods Appl. Mech. Engrg., 176, 231-246 (1999) · Zbl 0967.74066
[7] Strouboulis, T.; Babus˘ka, I.; Datta, D.; Copps, K.; Gangaraj, S. K., A posteriori estimation and adaptive control of the error in the quantity of interest - Part 1: A posteriori estimation of the error in the Von Mises stress and the stress intensity factors, Comput. Methods Appl. Mech. Engrg., 181, 261-294 (2000) · Zbl 0973.74083
[8] Parès, N.; Bonet, J.; Huerta, A.; Peraire, J., The computation of bounds for linear-functional outputs of weak solutions to the two-dimensional elasticity equations, Comput. Methods Appl. Mech. Engrg., 195, 4-6, 406-429 (2006) · Zbl 1193.74041
[9] Chamoin, L.; Ladevèze, P., Bounds on history-dependent or independent local quantities in viscoelasticity problems solved by approximate methods, Int. J. Numer. Methods Engrg., 71, 12, 1387-1411 (2007) · Zbl 1194.74028
[10] Ladevèze, P., Upper error bounds on calculated outputs of interest for linear and nonlinear structural problems, Comptes Rendus Académie des Sciences - Mécanique, Paris, 334, 399-407 (2006) · Zbl 1177.74367
[11] P. Ladevèze, Strict upper error bounds for calculated outputs of interest in computational structural mechanics, Comput. Mech., in press, doi:10.1007/S00466-007-0201-Y.; P. Ladevèze, Strict upper error bounds for calculated outputs of interest in computational structural mechanics, Comput. Mech., in press, doi:10.1007/S00466-007-0201-Y.
[12] Strouboulis, T.; Babus˘ka, I.; Copps, K., The design and analysis of the generalized finite element method, Comput. Methods Appl. Mech. Engrg., 181, 43-69 (2000) · Zbl 0983.65127
[13] J.J. Moreau, On unilateral constraints friction and plasticity. New Variational Techniques in Mathematical Physics, edizioni Cremonese, Rome (Italy), 1974, pp. 175-322.; J.J. Moreau, On unilateral constraints friction and plasticity. New Variational Techniques in Mathematical Physics, edizioni Cremonese, Rome (Italy), 1974, pp. 175-322.
[14] Ladevèze, P., Nonlinear Computational Structural Mechanics - New Approaches and Non-Incremental Methods of Calculation (1999), Springer: Springer NY · Zbl 0912.73003
[15] Duvaut, G.; Lions, J. L., Inequalities in Mechanics and Physics (1976), Springer-Verlag: Springer-Verlag Berlin, Heiderberg · Zbl 0331.35002
[16] Ladevèze, P., The large time increments method for analysis of structures with nonlinear behavior described by internal variables, Comptes Rendus Académie des Sciences, Paris, 309, II, 1095-1099 (1989), (in French) · Zbl 0677.73060
[17] Stein, E.; Ohmnimus, S.; Walhorn, E., Local error estimates of fem for displacements and stresses in linear elasticity by solving local Neumann problems, Int. J. Numer. Methods Engrg., 52, 727-746 (2001) · Zbl 1057.74042
[18] Becker, R.; Rannacher, R., An optimal control approach to shape a posteriori error estimation in finite element methods, (Isereles, A., Acta Numerica, 10 (2001), Cambridge University Press), 1-120 · Zbl 1105.65349
[19] Moës, N.; Dolbow, J.; Belytschko, T., A finite element method for crack growth without remeshing, Int. J. Numer. Methods Engrg., 46, 131-150 (1999) · Zbl 0955.74066
[20] Greenberg, H. J., The determination of upper and lower bounds for the solution of dirichlet problem, J. Math. Phys., 27, 161-182 (1948) · Zbl 0031.31001
[21] Washizu, K., Bounds for solutions of boundary value problems in elasticity, J. Math. Phys., 32, 117-128 (1953) · Zbl 0051.41004
[22] Sneddon, I. N.; Hill, R., Progress in Solid Mechanics (1964), North Holland Publishing Company: North Holland Publishing Company Amsterdam · Zbl 0097.39404
[23] Courant, R.; Hilbert, D., Methods of Mathematical Physics (1953), Interscience publishers: Interscience publishers New York · Zbl 0729.00007
[24] Muskhelishvili, N. I., Some Basic Problems of the Mathematical Theory of Elasticity (1953), Noordhoff Ltd.: Noordhoff Ltd. Groningen, Holland · Zbl 0052.41402
[25] Love, A. E.H., A Treatise on the Mathematical Theory of Elasticity (1944), Dover: Dover New York, pp. 186-213 · Zbl 0063.03651
[26] Mindlin, R. D., Force at a point in the interior of a semi-infinite solid, J. Phys., 7, 195-202 (1936) · JFM 62.1531.03
[27] Mindlin, R. D.; Cheng, D. H., Nuclei of strain in the semi-infinite solid, J. Appl. Phys., 21, 926-930 (1950) · Zbl 0038.37204
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.