## Monotone iterative method for initial value problem involving Riemann-Liouville fractional derivatives.(English)Zbl 1172.26307

By employing the method of monotone iteration, a result on the existence and uniqueness of a solution of the initial value problem for fractional differential equation
$D^{\alpha}u(t)= f(t,u), \quad t\in (0,T], \qquad t^{1-\alpha}u(t)\mid_{t=0} = u_ 0,$ where $$0<T<+\infty$$ and $$D^{\alpha}$$ is the Riemann-Liouville fractional derivative of order $$0<\alpha<1$$ is established and discussed.

### MSC:

 26A33 Fractional derivatives and integrals 34A12 Initial value problems, existence, uniqueness, continuous dependence and continuation of solutions to ordinary differential equations 34A40 Differential inequalities involving functions of a single real variable 34A99 General theory for ordinary differential equations
Full Text:

### References:

  Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J., Theory and applications of fractional differential equations, (2006), Elsevier Amsterdam · Zbl 1092.45003  Pitcher, E.; Sewell, W.E., Existence theorems for solutions of differential equations of non-integral order, Bull. amer. math. soc.., 44, 2, 100-107, (1938) · Zbl 0018.30701  Al-Bassam, M.A., Some existence theorems on differential equations of generalized order, J. reine angew. math., 218, 1, 70-78, (1965) · Zbl 0156.30804  Delbosco, D.; Rodino, L., Existence and uniqueness for a nonlinear fractional differential equation, J. math. anal. appl., 204, 2, 609-625, (1996) · Zbl 0881.34005  Kilbas, A.A.; Marzan, S.A., Nonlinear differential equations in weighted spaces of continuous functions, Dokl. nats. akad. nauk belarusi, 47, 1, 29-35, (2003), (in Rusian) · Zbl 1204.26009  Rivero, M.; Rodriguez-Germa, L.; Trujillo, J.J., Linear fractional differential equations with variable coefficients, Appl. math. lett., 21, 892-897, (2008) · Zbl 1152.34305  Ibrahim, Rabha W.; Darus, Maslina, Subordination and superordination for univalent solutions for fractional differential equations, J. math. anal. appl., 345, 871-879, (2008) · Zbl 1147.30009  Zhang, Shuqin, The existence of a positive solution for a nonlinear fractional differential equation, J. math. anal. appl., 252, 804-812, (2000) · Zbl 0972.34004  Zhang, Shuqin, Positive solution for some class of nonlinear fractional differential equation, J. math. anal. appl., 278, 1, 136-148, (2003) · Zbl 1026.34008  J.V. Devi, V. Lakshmikantham, Nonsmooth analysis and fractional differential equations, Nonlinear Anal. IMA, (in press) · Zbl 1237.49022  Y.-K. Chang, J.J. Nieto, Some new existence results for fractional differential inclusions with boundary conditions, Math. Comput. Modelling (in press) · Zbl 1165.34313  N. Kosmatov, Integral equations and initial value problems for nonlinear differential equations of fractional order, Nonlinear Anal. TMA, in press, (doi:10.1016/j.na.2008.03.037)  Ladde, G.S.; Lakshmikantham, V.; Vatsala, A.S., Monotone iterative techniques for nonlinear differential equations, (1985), Pitman Pub. Co. Boston · Zbl 0658.35003  Pao, C.V., Nonlinear parabolic and elliptic equations, (1992), Plenum Press New York · Zbl 0780.35044  Ahmad, B.; Sivasundaram, S., Existence results and monotone iterative technique for impulsive hybrid functional differential systems with anticipation and retardation, Appl. math. comput., 197, 515-524, (2008) · Zbl 1142.34049  Bhaskar, T.G.; Lakshmikantham, V.; Devi, J.V., Monotone iterative technique for functional differential equations with retardation and anticipation, Nonlinear anal. TMA, 66, 2237-2242, (2007) · Zbl 1121.34065  Nieto, J.J.; Rodriguez-Lopez, R., Monotone method for first-order functional differential equations, Comput. math. appl., 52, 471-484, (2006) · Zbl 1140.34406  Jiang, D.; Nieto, J.J.; Zuo, W., On monotone method for first and second order periodic boundary value problems and periodic solutions of functional differential equations, J. math. anal. appl., 289, 691-699, (2004) · Zbl 1134.34322  Nieto, J.J.; Rodriguez-Lopez, R., Boundary value problems for a class of impulsive functional equations, Comput. math. appl., 55, 2715-2731, (2008) · Zbl 1142.34362  Lakshmikanthan, V.; Vatsala, A.S., Basic theory of fractional differential equations, Nonlinear anal. TMA, 69, 8, 2677-2682, (2008) · Zbl 1161.34001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.