×

Dynamical properties and synchronization of complex non-linear equations for detuned lasers. (English) Zbl 1172.34033

A dynamical system modelling detuned lasers is investigated in the present work. Written in real variables, the model is a 5-dimensional nonlinear ordinary differential system. Various properties as: stability of steady states, periodic, quasiperioic and chaotic states are pointed out. Chaos investigation is based on numerical computations of Lyapunov exponents. Chaos synchronization for the system is also considered using the method of global synchronization. The last part of the paper shows that the system can be controlled by adding a suitable complex periodic term.

MSC:

34C60 Qualitative investigation and simulation of ordinary differential equation models
78A60 Lasers, masers, optical bistability, nonlinear optics
34C25 Periodic solutions to ordinary differential equations
34C27 Almost and pseudo-almost periodic solutions to ordinary differential equations
34C28 Complex behavior and chaotic systems of ordinary differential equations
34D05 Asymptotic properties of solutions to ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] DOI: 10.1364/JOSAB.2.000018
[2] Ning CZ, Phys. Rev. 41 pp 3827– (1990)
[3] DOI: 10.1016/S0167-2789(96)00129-7 · Zbl 0887.34048
[4] DOI: 10.1142/S0129183107010425 · Zbl 1115.37035
[5] DOI: 10.1103/PhysRevE.55.3689
[6] DOI: 10.1016/0167-2789(83)90123-9 · Zbl 1194.76087
[7] DOI: 10.1016/0167-2789(82)90057-4 · Zbl 1194.37039
[8] DOI: 10.1142/S0218127498000516
[9] DOI: 10.1016/0167-2789(85)90176-9 · Zbl 0579.76051
[10] Kiselev AD, J. Phys. Stud. 2 pp 30– (1998)
[11] DOI: 10.1142/S0218127407019962 · Zbl 1146.93372
[12] DOI: 10.1142/S0218127404011624 · Zbl 1091.34524
[13] DOI: 10.1007/s11071-007-9200-y · Zbl 1170.70365
[14] DOI: 10.1016/j.chaos.2006.01.036 · Zbl 1152.37317
[15] DOI: 10.1103/PhysRevLett.64.821 · Zbl 0938.37019
[16] DOI: 10.1109/31.75404
[17] DOI: 10.1016/j.chaos.2003.10.026 · Zbl 1050.93036
[18] DOI: 10.1016/S0960-0779(02)00659-8 · Zbl 1068.93019
[19] Harb AM, Chaos, Soliton. Fract.
[20] DOI: 10.1016/j.chaos.2004.11.031 · Zbl 1125.93469
[21] DOI: 10.1016/S0960-0779(98)00328-2 · Zbl 0985.37106
[22] DOI: 10.1016/j.physleta.2003.11.027 · Zbl 1065.93028
[23] DOI: 10.1016/S0960-0779(02)00487-3 · Zbl 1044.93026
[24] DOI: 10.1016/S0960-0779(02)00214-X · Zbl 1065.70015
[25] DOI: 10.1103/PhysRevLett.74.5028
[26] DOI: 10.1142/S0218127496000254 · Zbl 0900.70413
[27] DOI: 10.1002/9783527617548
[28] DOI: 10.1103/PhysRevA.14.2338
[29] DOI: 10.1070/RM1977v032n04ABEH001639 · Zbl 0383.58011
[30] Benettin G, Part 1: Theory, Meccanica pp 9–
[31] Benettin G, Part 2: Numerical Applications, Meccanica pp 21–
[32] Ott E, Chaos in Dynamical systems (1993)
[33] DOI: 10.1016/j.physleta.2007.02.024 · Zbl 1203.93086
[34] Li Y, Dyn. Contin., Discrete Impuls. Syst. B 14 pp 97– (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.