Chao, J.; Haselbacher, A.; Balachandar, S. A massively parallel multi-block hybrid compact WENO scheme for compressible flows. (English) Zbl 1172.76033 J. Comput. Phys. 228, No. 19, 7473-7491 (2009). Summary: We present a new multi-block hybrid compact WENO finite difference method for massively parallel computation of compressible flows. In contrast to earlier methods, our approach breaks the global dependence of compact methods by using explicit finite difference methods at block interfaces, and is fully conservative. The resulting method is fifth- and sixth-order accurate for convective and diffusive fluxes, respectively. The impact of the explicit interface treatment on the stability and accuracy of the multi-block method is quantified for advection and diffusion equations. Numerical errors increase slightly as the number of blocks is increased. It is also found that the maximum allowable time steps increase with the number of blocks. The method demonstrates excellent scalability on up to 1264 processors. Cited in 13 Documents MSC: 76M20 Finite difference methods applied to problems in fluid mechanics 76N15 Gas dynamics (general theory) 65Y05 Parallel numerical computation Keywords:shock-capturing methods; explicit finite difference methods; advection; diffusion Software:MPI; FDL3DI; HE-E1GODF PDF BibTeX XML Cite \textit{J. Chao} et al., J. Comput. Phys. 228, No. 19, 7473--7491 (2009; Zbl 1172.76033) Full Text: DOI OpenURL References: [1] Adams, N.; Shariff, K., A high-resolution hybrid compact-ENO scheme for shock – turbulence interaction problems, J. comput. phys., 127, 27-51, (1996) · Zbl 0859.76041 [2] A. Cook, W. Cabot, M. Welcome, P. Williams, B. Miller, B. de Supinski, R. Yates, Tera-scalable algorithms for variable-density elliptic hydrodynamics with spectral accuracy, in: Proceedings of the 2005 ACM/IEEE Conference on Supercomputing, 2005, p. 60. [3] Costa, B.; Don, W., Multi-domain hybrid spectral-WENO methods for hyperbolic conservation laws, J. comput. phys., 224, 970-991, (2007) · Zbl 1123.65306 [4] Fornberg, B., A practical guide to pseudospectral methods, (1998), Cambridge University Press · Zbl 0912.65091 [5] D. Gaitonde, M. Visbal, High-order schemes for Navier-Stokes equations: algorithm and implementation into FDL3DI, Technical Report AFRL-VA-WP-RT-1998-3060, Air Force Research Laboratory, Wright-Patterson Air Force Base, 1998. [6] D. Gaitonde, M. Visbal, Further development of a Navier-Stokes solution procedure based on higher-order formulas, AIAA Paper 99-0557, 1999. [7] Gamet, L.; Ducros, F.; Nicoud, F.; Poinsot, T., Compact finite difference schemes on non-uniform meshes. application to direct numerical simulation of compressible flows, Int. J. numer. meth. fluids, 29, 159-191, (1999) · Zbl 0939.76060 [8] Gropp, W.; Lusk, E.; Skjellum, A., Using MPI: portable parallel programming with the message-passing interface, (1999), The MIT Press [9] Jiang, G.; Shu, C.-W., Efficient implementation of weighted ENO schemes, J. comput. phys., 126, 202-228, (1996) · Zbl 0877.65065 [10] Ladeinde, F.; Cai, X.; Visbal, M.; Gaitonde, D., Parallel implementation of curvilinear high-order formulas, Int. J. comp. fluid dyn., 17, 467-485, (2003) · Zbl 1161.76527 [11] Larsson, J.; Gustafsson, B., Stability criteria for hybrid difference methods, J. comput. phys., 227, 2886-2898, (2008) · Zbl 1135.65369 [12] Lele, S., Compact finite difference schemes with spectral-like resolution, J. comput. phys., 103, 16-42, (1992) · Zbl 0759.65006 [13] S.-C. Lo, G. Blaisdell, A. Lyrintzis, High-order shock capturing schemes for turbulence calculations, AIAA Paper 2007-827, 2007. [14] Mattor, N.; Williams, T.; Hewett, D., Algorithm for solving tridiagonal matrix problems in parallel, Parallel comput., 21, 1769-1782, (1995) [15] Pascarelli, A.; Piomelli, U.; Candler, G., Multi-block large-eddy simulations of turbulent boundary layers, J. comput. phys., 157, 256-279, (2000) · Zbl 0960.76040 [16] Pirozzoli, S., Conservative hybrid compact-WENO scheme for shock – turbulence interaction, J. comput. phys., 178, 81-117, (2002) · Zbl 1045.76029 [17] A. Povitsky, Parallel directionally split solver based on reformulation of pipelined Thomas algorithm, NASA Technical Report, NASA/CR-1998-208733, 1998. [18] Ren, Y.-X.; Liu, M.; Zhang, H., A characteristic-wise hybrid compact-ENO scheme for solving hyperbolic conservation laws, J. comput. phys., 192, 365-386, (2003) · Zbl 1037.65090 [19] Sandham, N.; Reynolds, W., Compressible mixing layer: linear theory and direct simulation, Aiaa j., 28, 618-624, (1990) [20] Sedov, L., Similarity and dimensional methods in mechanics, (1959), Academic Press · Zbl 0121.18504 [21] Sengupta, T.; Dipankar, A.; Rao, A., A new compact scheme for parallel computing using domain decomposition, J. comput. phys., 220, 654-677, (2007) · Zbl 1370.76072 [22] Shen, Y.; Yang, G.; Gao, Z., High-resolution finite compact difference schemes for hyperbolic conservation laws, J. comput. phys., 216, 114-137, (2006) · Zbl 1093.65085 [23] C.-W. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, NASA Technical Report, NASA/CR-97-206253, 1997. [24] Shu, C.-W.; Osher, S., Efficient implementation of essentially non-oscillatory shock-capturing schemes, II, J. comput. phys., 83, 32-76, (1989) · Zbl 0674.65061 [25] X.-H. Sun, S. Moitra, A fast parallel tridiagonal algorithm for a class of CFD applications, NASA Technical Paper 3585, 1996. [26] Taylor, G., The formation of a blast wave by a very intense explosion. I. theoretical discussion, Proc. R. soc. lond. A, 201, 1065, 159-174, (1950) · Zbl 0036.26404 [27] Thompson, K., Time dependent boundary conditions for hyperbolic systems, J. comput. phys., 68, 1-24, (1987) · Zbl 0619.76089 [28] Toro, E., Riemann solvers and numerical methods for fluid dynamics: A practical introduction, (1999), Springer · Zbl 0923.76004 [29] Visbal, M.; Gaitonde, D., High-order accurate methods for complex unsteady subsonic flows, Aiaa j., 37, 1231-1239, (1999) [30] Visbal, M.; Gaitonde, D., Very high-order spatially implicit schemes for computational acoustics on curvilinear meshes, J. comput. acoust., 9, 1259-1286, (2001) · Zbl 1360.76192 [31] Visbal, M.; Gaitonde, D., On the use of higher-order finite difference schemes on curvilinear and deforming meshes, J. comput. phys., 181, 155-185, (2002) · Zbl 1008.65062 [32] M. Visbal, R. Gordnier, Direct numerical simulation of the interaction of a boundary layer with a flexible panel, AIAA Paper 2001-2721, 2001. [33] Yee, H.; Sandham, N.; Djomehri, M., An artificial nonlinear diffusivity method for supersonic reacting flows with shocks, J. comput. phys., 150, 199-239, (1999) [34] Zhang, X.; Blaisdell, G.; Lyrintzis, S., High-order compact schemes with filters on multi-block domains, J. sci. comput., 21, 321-339, (2004) · Zbl 1069.76043 [35] Zhou, Q.; Yao, Z.; He, F.; Shen, M., A new family of high-order compact upwind difference schemes with good spectral resolution, J. comput. phys., 227, 1306-1339, (2007) · Zbl 1128.65070 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.