Johannes, Jan Deconvolution with unknown error distribution. (English) Zbl 1173.62018 Ann. Stat. 37, No. 5A, 2301-2323 (2009). Summary: We consider the problem of estimating a density \(f_X\) using a sample \(Y_1,\dots, Y_n\) from \(f_Y=f_X* f_\varepsilon\), where \(f_\varepsilon\) is an unknown density. We assume that an additional sample \(\varepsilon_1,\dots, \varepsilon_m\) from \(f_\varepsilon\) is observed. Estimators of \(f_X\) and its derivatives are constructed by using nonparametric estimators of \(f_Y\) and \(f_\varepsilon\) and by applying a spectral cut-off in the Fourier domain. We derive the rate of convergence of the estimators in case of a known and unknown error density \(f_\varepsilon \), where it is assumed that \(f_X\) satisfies a polynomial, logarithmic or general source condition. It is shown that the proposed estimators are asymptotically optimal in a minimax sense in the models with known or unknown error density, if the density \(f_X\) belongs to a Sobolev space \(H_\wp\) and \(f_\varepsilon\) is ordinary smooth or supersmooth. Cited in 46 Documents MSC: 62G07 Density estimation 62G20 Asymptotic properties of nonparametric inference 42A38 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type Keywords:deconvolution; Fourier transform; kernel estimation; spectral cut off; Sobolev space; source condition; optimal rate of convergence; Rosenblatt-Parzen kernel estimator PDF BibTeX XML Cite \textit{J. Johannes}, Ann. Stat. 37, No. 5A, 2301--2323 (2009; Zbl 1173.62018) Full Text: DOI arXiv References: [1] Bigot, J. and Van Bellegem, S. (2006). Log-density deconvolution by wavelet thresholding. Technical report, Univ. catholique de Louvain. · Zbl 1223.62028 [2] Butucea, C. and Matias, C. (2005). Minimax estimation of the noise level and of the deconvolution density in a semiparametric deconvolution model. Bernoulli 11 309-340. · Zbl 1063.62044 [3] Carrasco, M. and Florens, J.-P. (2002). Spectral method for deconvolving a density. Working Paper No. 138, Univ. Toulouse I, IDEI. [4] Carroll, R. J. and Hall, P. (1988). Optimal rates of convergence for deconvolving a density. J. Amer. Statist. Assoc. 83 1184-1186. · Zbl 0673.62033 [5] Cavalier, L. and Hengartner, N. (2005). Adaptive estimation for inverse problems with noisy operators. Inverse Problems 21 1345-1361. · Zbl 1074.62053 [6] Comte, F., Rozenholc, Y. and Taupin, M.-L. (2006). Penalized contrast estimator for density deconvolution. Canad. J. Statist. 34 431-452. · Zbl 1104.62033 [7] Devroye, L. (1989). Consistent deconvolution in density estimation. Canad. J. Statist. 17 235-239. · Zbl 0679.62029 [8] Diggle, P. J. and Hall, P. (1993). A Fourier approach to nonparametric deconvolution of a density estimate. J. Roy. Statist. Soc. Ser. B 55 523-531. · Zbl 0783.62030 [9] Efromovich, S. (1997). Density estimation for the case of supersmooth measurement error. J. Amer. Statist. Assoc. 92 526-535. · Zbl 0890.62027 [10] Engl, H. W., Hanke, M. and Neubauer, A. (2000). Regularization of Inverse Problems . Kluwer Academic, Dordrecht. · Zbl 0711.34018 [11] Fan, J. (1991). On the optimal rates of convergence for nonparametric deconvolution problems. Ann. Statist. 19 1257-1272. · Zbl 0729.62033 [12] Fan, J. (1992). Deconvolution with supersmooth distributions. Canad. J. Statist. 20 734-747. · Zbl 0754.62020 [13] Fan, J. and Koo, J. Y. (2002). Wavelet deconvolution. IEEE Trans. Inform. Theory 48 734-747. · Zbl 1071.94511 [14] Goldenshluger, A. (1999). On pointwise adaptive nonparametric deconvolution. Bernoulli 5 907-925. · Zbl 0953.62033 [15] Goldenshluger, A. (2000). Density deconvolution in the circular structural model. J. Multivariate Anal. 81 360-375. · Zbl 0998.62029 [16] Hall, P. and Qiu, P. (2005). Discrete-transform approach to deconvolution problems. Biometrika 92 135-148. · Zbl 1068.62040 [17] Hall, P. and Yao, Q. (2003). Inference in components of variance models with low replication. Ann. Statist. 31 414-441. · Zbl 1039.62065 [18] Havilio, M. (2006). Signal deconvolution based expression-detection and background adjustment for microarray data. J. Comput. Biol. 13 63-80. [19] Horowitz, J. L. and Markatou, M. (1996). Semiparametric estimation of regression models for panel data. Rev. Econom. Stud. 63 145-168. · Zbl 0839.62051 [20] Kawata, T. (1972). Fourier Analysis in Probability Theory . Academic Press, New York. · Zbl 0271.60022 [21] Kim, P. T. and Koo, J. Y. (2002). Optimal spherical deconvolution. J. Multivariate Anal. 80 21-42. · Zbl 0998.62030 [22] Koo, J. Y. and Park, B. U. (1996). B -spline deconvolution based on the EM algorithm. J. Statist. Comput. Simulation 54 275-288. · Zbl 0903.62031 [23] Levitt, D. G. (2003). The use of a physiologically based pharmacokinetic model to evaluate deconvolution measurements of systemic absorption. In BMC Clinical Pharmacology 3 . BioMed Central. Available at http://www.biomedcentral.com/1472-6904/3/1. [24] Liu, M. C. and Taylor, R. L. (1989). A consistent nonparametric density estimator for the deconvolution problem. Canad. J. Statist. 17 427-438. · Zbl 0903.62031 [25] Mair, B. A. (1994). Tikhonov regularization for finitely and infinitely smoothing operators. SIAM J. Math. Anal. 25 135-147. · Zbl 0819.65141 [26] Mair, B. A. and Ruymgaart, F. H. (1996). Statistical inverse estimation in Hilbert scales. SIAM J. Math. Anal. 56 1424-1444. · Zbl 0864.62020 [27] Meister, A. (2006). Density estimation with normal measurement error with unknown variance. Statist. Sinica 16 195-211. · Zbl 1087.62049 [28] Mendelsohn, J. and Rice, J. (1982). Deconvolution of micro-fluorometric histograms with B -splines. J. Amer. Statist. Assoc. 77 748-753. [29] Nair, M., Pereverzev, S. V. and Tautenhahn, U. (2005). Regularization in Hilbert scales under general smoothing conditions. Inverse Problems 21 1851-1869. · Zbl 1093.65057 [30] Natterer, F. (1984). Error bounds for Tikhonov regularization in Hilbert scales. Applicable Anal. 18 29-37. · Zbl 0504.65031 [31] Neumann, M. H. (1997). On the effect of estimating the error density in nonparametric deconvolution. J. Nonparametr. Statist. 7 307-330. · Zbl 1003.62514 [32] Neumann, M. H. (2006). Deconvolution from panel data with unknown error distribution. J. Multivariate Anal. 98 1955-1968. · Zbl 1206.62063 [33] Parzen, E. (1962). On estimation of a probability density function and mode. Ann. Math. Statist. 33 1065-1076. · Zbl 0116.11302 [34] Pensky, M. and Vidakovic, B. (1999). Adaptive wavelet estimator for nonparametric density deconvolution. Ann. Statist. 27 2033-2053. · Zbl 0962.62030 [35] Petrov, V. V. (1995). Limit Theorems of Probability Theory. Sequences of Independent Random Variables , 4th ed. Clarendon Press, Oxford. · Zbl 0826.60001 [36] Stefanski, L. A. (1990). Rate of convergence of some estimators in a class of deconvolution problems. Statist. Probab. Lett. 9 229-235. · Zbl 0686.62026 [37] Tautenhahn, U. (1996). Error estimates for regularization methods in Hilbert scales. SIAM J. Numer. Anal. 33 2120-2130. · Zbl 0865.65040 [38] Tessier, E. (1995). Analysis and calibration of natural guide star adaptive optics data. In Adaptive Optical Systems and Applications (R. K. Tyson and R. Q. Fugate, eds.) 178-193. Proc. SPIE 2534 . Available at [39] Vainikko, G. M. and Veretennikov, A. Y. (1986). Iteration Procedures in Ill-Posed Problems . Nauka, Moscow (in Russian). · Zbl 0623.65062 [40] van der Vaart, A. W. (1998). Asymptotic Statistics . Cambridge Univ. Press. · Zbl 0910.62001 [41] Zhang, C.-H. (1990). Fourier methods for estimating mixing densities and distributions. Ann. Statist. 18 806-831. · Zbl 0778.62037 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.