Bellavia, Stefania; Macconi, Maria; Morini, Benedetta An interior point Newton-like method for non-negative least-squares problems with degenerate solution. (English) Zbl 1174.65414 Numer. Linear Algebra Appl. 13, No. 10, 825-846 (2006). Summary: An interior point approach for medium and large non-negative linear least-squares problems is proposed. Global and locally quadratic convergence is shown even if a degenerate solution is approached. Viable approaches for implementation are discussed and numerical results are provided. Cited in 12 Documents MSC: 65K05 Numerical mathematical programming methods 90C20 Quadratic programming 90C25 Convex programming 90C51 Interior-point methods 90C53 Methods of quasi-Newton type Keywords:convex quadratic programming; degeneracy; interior point methods; inexact Newton methods; global convergence; non-negative linear least-squares problems; quadratic convergence; numerical results Software:Harwell-Boeing sparse matrix collection; TRON; LOQO PDF BibTeX XML Cite \textit{S. Bellavia} et al., Numer. Linear Algebra Appl. 13, No. 10, 825--846 (2006; Zbl 1174.65414) Full Text: DOI References: [1] Numerical Methods for Least Squares Problems. SIAM: Philadelphia, PA, 1996. [2] Lotstedt, BIT 23 pp 500– (1983) [3] , . Practical Optimization. Academic Press: New York, 1981. · Zbl 0503.90062 [4] . Solving Least-Squares Problems. Prentice-Hall: Englewood Cliffs, NJ, 1974. · Zbl 0860.65028 [5] Bierlaire, Linear Algebra and its Applications 143 pp 111– (1991) [6] Lin, SIAM Journal on Optimization 9 pp 1100– (1999) [7] Moré, SIAM Journal on Optimization 1 pp 93– (1991) [8] Morigi, Journal of Computational and Applied Mathematics [9] Portugal, Mathematics of Computation 63 pp 625– (1994) [10] Chen, SIAM Review 43 pp 129– (2001) [11] Calvetti, Inverse Problems 20 pp 1747– (2004) [12] Hanke, Linear Algebra and Its Applications 316 pp 223– (2000) [13] Numerical optimization methods for image restoration. Ph.D. Thesis, Stanford University, 2002. [14] Rojas, Inverse Problems 18 pp 1291– (2002) [15] Coleman, SIAM Journal on Optimization 6 pp 418– (1996) [16] Coleman, SIAM Journal on Optimization 6 pp 1040– (1996) [17] . Trust-region interior-point algorithms for minimization problems with simple bounds. In Applied Mathematics and Parallel Computing, et al. (eds). Festscrift for Klaus Ritter, Physica, Heidelberg, 1996; 97–107. · Zbl 0907.65056 [18] , . Convergence analysis of a primal-dual interior point method for nonlinear programming. Optimization Online, http://www.optimizationonline.org/DBHTML/2004 [19] Heinkenschloss, Mathematical Programming 86 pp 615– (1999) [20] Kanzow, Computational Optimization and Applications [21] Ulbrich, SIAM Journal on Optimization 11 pp 889– (2000) [22] Coleman, SIAM Journal on Optimization 3 pp 298– (1993) [23] Coleman, Computational Optimization and Applications 15 pp 5– (2000) [24] LOQO: an interior point code for quadratic programming. Technical Report SOR 94-15, Princeton University, 1994. [25] Primal-Dual Interior-Point Methods. SIAM: Philadelphia, PA, 1997. · Zbl 0863.65031 [26] Dembo, SIAM Journal on Numerical Analysis 19 pp 400– (1982) [27] Freund, Numerische Mathematik 60 pp 315– (1991) [28] Conjugate gradient methods for indefinite systems. In Numerical Analysis Dundee, (ed.). vol. 1975. Springer: Berlin, 1976; 73–89. [29] Lanczos, Journal of Research of the National Bureau of Standards 49 pp 33– (1952) [30] Van der Vorst, SIAM Journal on Statistical and Scientific Computing 13 pp 631– (1992) [31] Saad, SIAM Journal on Statistical and Scientific Computing 7 pp 856– (1986) [32] Paige, ACM Transactions on Mathematical Software 8 pp 43– (1982) [33] Duff, ACM Transactions on Mathematical Software 15 pp 1– (1989) [34] Nocedal, Computational Optimization and Applications 22 pp 5– (2002) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.