×

Maximal parabolic regularity for divergence operators including mixed boundary conditions. (English) Zbl 1178.35210

The authors consider operators in divergence form with discontinuous coefficients, satisfying mixed boundary conditions. The main tools of this paper are maximal parabolic regularity techniques and the fact that if a domain is the image under a volume preserving and bi-Lipschitz mapping of Gröger’s model sets, then the maximal regularity property holds. By using these powerful instruments the authors develop a theory that has applications to quasilinear equations with non-smooth data.

MSC:

35K59 Quasilinear parabolic equations
35B65 Smoothness and regularity of solutions to PDEs
35R05 PDEs with low regular coefficients and/or low regular data
35K20 Initial-boundary value problems for second-order parabolic equations
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Adams, L.; Li, Z., The immersed interface/multigrid methods for interface problems, SIAM J. sci. comput., 24, 463-479, (2002) · Zbl 1014.65099
[2] Amann, H., Parabolic evolution equations and nonlinear boundary conditions, J. differential equations, 72, 2, 201-269, (1988) · Zbl 0658.34011
[3] Amann, H., Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, (), 9-126 · Zbl 0810.35037
[4] Amann, H., Linear and quasilinear parabolic problems, (1995), Birkhäuser Basel, Boston, Berlin
[5] Antontsev, S.N.; Chipot, M., The thermistor problem: existence, smoothness, uniqueness, blowup, SIAM J. math. anal., 25, 1128-1156, (1994) · Zbl 0808.35059
[6] Arendt, W., Semigroup properties by Gaussian estimates, RIMS kokyuroku, 1009, 162-180, (1997) · Zbl 1074.47508
[7] Arendt, W.; terElst, A.F.M., Gaussian estimates for second order elliptic operators with boundary conditions, J. operator theory, 38, 87-130, (1997) · Zbl 0879.35041
[8] Arendt, W., Semigroups and evolution equations: functional calculus, regularity and kernel estimates, (), 1-85 · Zbl 1082.35001
[9] Ashyralyev, A.; Sobolevskii, P.E., New difference schemes for partial differential equations, Oper. theory adv. appl., vol. 148, (2004), Birkhäuser Basel · Zbl 1354.65212
[10] Auscher, P., On necessary and sufficient conditions for \(L^p\)-estimates of Riesz transforms associated to elliptic operators on \(\mathbb{R}^n\) and related estimates, Mem. amer. math. soc., 186, 871, (2007) · Zbl 1221.42022
[11] Auscher, P.; Duong, X.T.; Tchamitchian, P., Absence de principe du maximum pour certaines équations paraboliques complexes, Colloq. math., 71, 1, 87-95, (1996) · Zbl 0960.35011
[12] Auscher, P.; Tchamitchian, P., Square roots of elliptic second order divergence operators on strongly Lipschitz domains: \(L^p\) theory, Math. ann., 320, 3, 577-623, (2001) · Zbl 1161.35350
[13] Axelsson, A.; Keith, S.; McIntosh, A., The Kato square root problem for mixed boundary value problems, J. lond. math. soc. (2), 74, 1, 113-130, (2006) · Zbl 1123.35013
[14] Bandelow, U.; Hünlich, R.; Koprucki, T., Simulation of static and dynamic properties of edge-emitting multiple-quantum-well lasers, Ieee jstqe, 9, 798-806, (2003)
[15] Bennett, C.; Sharpley, R., Interpolation of operators, Pure appl. math., vol. 129, (1988), Academic Press Boston · Zbl 0647.46057
[16] Berestycki, H.; Hamel, F.; Roques, L., Analysis of the periodically fragmented environment model: I-species persistence, J. math. biol., 51, 1, 75-113, (2005) · Zbl 1066.92047
[17] Berezanskij, Y.M., Selfadjoint operators in spaces of functions of infinitely many variables, Transl. math. monogr., vol. 63, (1986), Amer. Math. Soc. Providence, RI
[18] Byun, S.-S., Optimal \(W^{1, p}\) regularity theory for parabolic equations in divergence form, J. evol. equ., 7, 3, 415-428, (2007) · Zbl 1221.35426
[19] Caginalp, G.; Chen, X., Convergence of the phase field model to its sharp interface limits, European J. appl. math., 9, 4, 417-445, (1998) · Zbl 0930.35024
[20] Carslaw, H.; Jaeger, J., Conduction of heat in solids, (1988), Clarendon Press New York · Zbl 0972.80500
[21] Chang, N.H.; Chipot, M., On some mixed boundary value problems with nonlocal diffusion, Adv. math. sci. appl., 14, 1, 1-24, (2004) · Zbl 1064.35083
[22] Chipot, M.; Lovat, B., On the asymptotic behavior of some nonlocal problems, Positivity, 3, 65-81, (1999) · Zbl 0921.35071
[23] Ciarlet, P.G., The finite element method for elliptic problems, Stud. math. appl., vol. 4, (1978), North-Holland Amsterdam, New York, Oxford · Zbl 0445.73043
[24] Clement, P.; Li, S., Abstract parabolic quasilinear equations and application to a groundwater flow problem, Adv. math. sci. appl., 3, 17-32, (1994) · Zbl 0811.35040
[25] Dauge, M., Neumann and mixed problems on curvilinear polyhedra, Integral equations operator theory, 215, 2, 227-261, (1992) · Zbl 0767.46026
[26] Davies, E.B., Limits on \(L^p\) regularity of self-adjoint elliptic operators, J. differential equations, 135, 1, 83-102, (1997) · Zbl 0871.35020
[27] Denk, R.; Hieber, M.; Prüss, J., \(\mathcal{R}\)-boundedness, Fourier multipliers and problems of elliptic and parabolic type, Mem. amer. math. soc., 166, 788, (2003)
[28] de Simon, L., Un’applicazione Della teoria degli integrali singolari allo studio delle equazione differenziali lineari astratte del primo ordine, Rend. sem. mat. univ. Padova, 34, 205-223, (1964) · Zbl 0196.44803
[29] Dieudonné, J., Grundzüge der modernen analysis, 1, (1971), VEB Deutscher Verlag der Wissenschaften Berlin · Zbl 0208.31801
[30] Dore, G.; Venni, A., On the closedness of the sum of two closed operators, Math. Z., 196, 189-201, (1987) · Zbl 0615.47002
[31] Dore, G., \(L^p\) regularity for abstract differential equations, (), 25-38 · Zbl 0818.47044
[32] Duong, X.T.; M^{c}Intosh, A., The \(L^p\) boundedness of Riesz transforms associated with divergence form operators, (), 15-25 · Zbl 1193.42089
[33] Duong, X.T.; Robinson, D., Semigroup kernels, Poisson bounds, and holomorphic functional calculus, J. funct. anal., 142, 1, 89-128, (1996) · Zbl 0932.47013
[34] Elschner, J.; Kaiser, H.-C.; Rehberg, J.; Schmidt, G., \(W^{1, q}\) regularity results for elliptic transmission problems on heterogeneous polyhedra, Math. models methods appl. sci., 17, 4, 593-615, (2007) · Zbl 1206.35059
[35] Elschner, J.; Rehberg, J.; Schmidt, G., Optimal regularity for elliptic transmission problems including \(C^1\) interfaces, Interfaces free bound., 9, 233-252, (2007) · Zbl 1147.47034
[36] Evans, L.C.; Gariepy, R.F., Measure theory and fine properties of functions, Stud. adv. math., (1992), CRC Press Boca Raton, New York, London, Tokyo · Zbl 0626.49007
[37] Fonseca, I.; Parry, G., Equilibrium configurations of defective crystals, Arch. ration. mech. anal., 120, 245-283, (1992) · Zbl 0785.73007
[38] Franzone, P.C.; Guerri, L.; Rovida, S., Wavefront propagation in an activation model of the anisotropic cardiac tissue: asymptotic analysis and numerical simulation, J. math. biol., 28, 121-176, (1990) · Zbl 0733.92006
[39] Gajewski, H.; Gröger, K., Reaction – diffusion processes of electrical charged species, Math. nachr., 177, 109-130, (1996) · Zbl 0851.35061
[40] Gajewski, H.; Gröger, K.; Zacharias, K., Nichtlineare operatorgleichungen und operatordifferentialgleichungen, (1974), Akademie-Verlag Berlin · Zbl 0289.47029
[41] Gajewski, H.; Skrypnik, I.V., On the uniqueness of solutions for nonlinear elliptic – parabolic problems, J. evol. equ., 3, 247-281, (2003) · Zbl 1033.35016
[42] Giacomin, G.; Lebowitz, J.L., Phase segregation in particle systems with long-range interactions. I. macroscopic limits, J. stat. phys., 87, 37-61, (1997) · Zbl 0937.82037
[43] Giacomin, G.; Lebowitz, J.L., Phase segregation in particle systems with long-range interactions. II. interface motion, SIAM J. appl. math., 58, 1707-1729, (1998) · Zbl 1015.82027
[44] Giaquinta, M.; Struwe, M., An optimal regularity result for a class of quasilinear parabolic systems, Manuscripta math., 36, 223-239, (1981) · Zbl 0475.35026
[45] E. Giusti, Metodi diretti nel calcolo delle variazioni, Unione Matematica Italiana, Bologna, 1994 · Zbl 0942.49002
[46] Griepentrog, J.A., On the unique solvability of a nonlocal phase separation problem for multicomponent systems, (), 153-164 · Zbl 1235.35149
[47] Griepentrog, J.A.; Höppner, W.; Kaiser, H.-C.; Rehberg, J., A bi-Lipschitz, volume-preserving map form the unit ball onto the cube, Note mat., 28, 185-201, (2008)
[48] Griepentrog, J.A.; Gröger, K.; Kaiser, H.C.; Rehberg, J., Interpolation for function spaces related to mixed boundary value problems, Math. nachr., 241, 110-120, (2002) · Zbl 1010.46021
[49] Griepentrog, J.A.; Kaiser, H.-C.; Rehberg, J., Heat kernel and resolvent properties for second order elliptic differential operators with general boundary conditions on \(L^p\), Adv. math. sci. appl., 11, 87-112, (2001) · Zbl 1009.35021
[50] Griepentrog, J.A., Linear elliptic boundary value problems with non-smooth data: Campanato spaces of functionals, Math. nachr., 243, 19-42, (2002) · Zbl 1157.35351
[51] Griepentrog, J.A., Maximal regularity for nonsmooth parabolic problems in sobolev – morrey spaces, Adv. differential equations, 12, 9, 1031-1078, (2007) · Zbl 1157.35023
[52] Grisvard, P., Elliptic problems in nonsmooth domains, (1985), Pitman Boston · Zbl 0695.35060
[53] Gröger, K., A \(W^{1, p}\)-estimate for solutions to mixed boundary value problems for second order elliptic differential equations, Math. ann., 283, 679-687, (1989) · Zbl 0646.35024
[54] Gröger, K.; Rehberg, J., Resolvent estimates in \(W^{- 1, p}\) for second order elliptic differential operators in case of mixed boundary conditions, Math. ann., 285, 1, 105-113, (1989) · Zbl 0659.35032
[55] Gröger, K., \(W^{1, p}\)-estimates of solutions to evolution equations corresponding to nonsmooth second order elliptic differential operators, Nonlinear anal., 18, 6, 569-577, (1992) · Zbl 0764.35022
[56] Haller-Dintelmann, R.; Kaiser, H.-C.; Rehberg, J., Elliptic model problems including mixed boundary conditions and material heterogeneities, J. math. pures appl., 89, 25-48, (2008) · Zbl 1132.35022
[57] R. Haller-Dintelmann, C. Meyer, J. Rehberg, A. Schiela, Hölder continuity and optimal control for nonsmooth elliptic problems, Appl. Math. Optim., in press · Zbl 1179.49041
[58] Heinkenschloss, M.; Troeltzsch, F., Analysis of the langrange-SQP-Newton method for the control of a phase field equation, Control cybernet., 28, 2, 177-211, (1999) · Zbl 0992.49023
[59] Hieber, M.; Rehberg, J., Quasilinear parabolic systems with mixed boundary conditions, SIAM J. math. anal., 40, 1, 292-305, (2008) · Zbl 1221.35194
[60] Jerison, D.; Kenig, C., The inhomogeneous Dirichlet problem in Lipschitz domains, J. funct. anal., 130, 1, 161-219, (1995) · Zbl 0832.35034
[61] Jonsson, A.; Wallin, H., Function spaces on subsets of \(\mathbb{R}^n\), Math. rep., 2, 1, (1984)
[62] Kalton, N.; Kunstmann, P.; Weis, L., Perturbation and interpolation theorems for the \(H^\infty\)-calculus with applications to differential operators, Math. ann., 336, 747-801, (2006) · Zbl 1111.47020
[63] Kapon, E., Semiconductor lasers I, (1999), Academic Press Boston
[64] Kato, T., Perturbation theory for linear operators, Classics math., (1980), Springer-Verlag Berlin, reprint of the corr. print. of the 2nd ed.
[65] Krejci, P.; Rocca, E.; Sprekels, J., Nonlocal temperature-dependent phase-field models for non-isothermal phase transitions, J. London math. soc. (2), 76, 197-210, (2007) · Zbl 1128.80002
[66] Kunstmann, P.C., Heat kernel estimates and \(L^p\) spectral independence of elliptic operators, Bull. London math. soc., 31, 345-353, (1999) · Zbl 0927.47028
[67] Kunstmann, P.C.; Weis, L., Perturbation theorems for maximal \(L_p\)-regularity, Ann. sc. norm. super. Pisa cl. sci. (4), 30, 2, 415-435, (2001) · Zbl 1065.47008
[68] Ladyzhenskaya, O.A.; Solonnikov, V.A.; Ural’tseva, N.N., Linear and quasi-linear equations of parabolic type, Transl. math. monogr., vol. 23, (1967), Amer. Math. Soc. Providence, RI · Zbl 0164.12302
[69] Lunardi, A., Abstract quasilinear parabolic equations, Math. ann., 267, 395-415, (1984) · Zbl 0547.35054
[70] Maz’ya, V.G., Sobolev spaces, (1985), Springer-Verlag Berlin, Heidelberg, New York, Tokyo · Zbl 0727.46017
[71] Maz’ya, V.; Elschner, J.; Rehberg, J.; Schmidt, G., Solutions for quasilinear nonsmooth evolution systems in \(L^p\), Arch. ration. mech. anal., 171, 2, 219-262, (2004) · Zbl 1053.35058
[72] Maz’ya, V.; Shaposhnikova, T.O., Theory of multipliers in spaces of differentiable functions, Monogr. stud. math., vol. 23, (1985), Pitman Boston, London, Melbourne · Zbl 0645.46031
[73] M^{c}Intosh, A., Operators which have an \(H^\infty\) functional calculus, (), 210-231
[74] Meyers, N., An \(L^p\)-estimate for the gradient of solutions of second order elliptic divergence equations, Ann. sc. norm. super. Pisa sci. fis. mat. (3), 17, 189-206, (1963) · Zbl 0127.31904
[75] Ouhabaz, E., Analysis of heat equations on domains, London math. soc. monogr. ser., vol. 31, (2005), Princeton Univ. Press Princeton
[76] Pazy, A., Semigroups of linear operators and applications to partial differential equations, (1983), Springer-Verlag · Zbl 0516.47023
[77] J. Prüss, Maximal regularity for evolution equations in \(L^p\)-spaces, in: Conf. Semin. Mat. Univ. Bari, 285, 2002, pp. 1-39
[78] Quastel, J., Diffusion of color in the simple exclusion process, Comm. pure appl. math., 45, 6, 623-679, (1992) · Zbl 0769.60097
[79] Quastel, J.; Rezakhanlou, F.; Varadhan, S.R.S., Large deviations for the symmetric exclusion process in dimension \(d \geqslant 3\), Probab. theory related fields, 113, 1-84, (1999) · Zbl 0928.60087
[80] Selberherr, S., Analysis and simulation of semiconductor devices, (1984), Springer-Verlag Wien
[81] Shamir, E., Regularization of mixed second-order elliptic problems, Israel J. math., 6, 150-168, (1968) · Zbl 0157.18202
[82] Sneiberg, I., Spectral properties of linear operators in families of Banach spaces, Mat. issled., 9, 214-229, (1974) · Zbl 0314.46033
[83] Sommerfeld, A., Thermodynamics and statistical mechanics, Lect. theoret. phys., vol. V, (1956), Academic Press New York · Zbl 0070.43613
[84] Struwe, M., On the Hölder continuity of bounded weak solutions of quasilinear parabolic systems, Manuscripta math., 35, 125-145, (1981) · Zbl 0519.35007
[85] Triebel, H., Interpolation theory, function spaces, differential operators, (1978), North-Holland Amsterdam, New York, Oxford · Zbl 0387.46032
[86] Triebel, H., On spaces of \(B_{\infty, q}^s\) and \(C^s\) type, Math. nachr., 85, 75-90, (1978) · Zbl 0394.46029
[87] Tukia, P., The planar schönflies theorem for Lipschitz maps, Ann. acad. sci. fenn. ser. AI, 5, 1, 49-72, (1980) · Zbl 0411.57015
[88] Unger, A.; Troeltzsch, F., Fast solutions of optimal control problems in the selective cooling of steel, ZAMM Z. angew. math. mech., 81, 7, 447-456, (2001) · Zbl 0993.49024
[89] Wloka, J., Partial differential equations, (1987), Cambridge Univ. Press Cambridge · Zbl 0623.35006
[90] Ziemer, W.P., Weakly differentiable functions. Sobolev spaces and functions of bounded variation, Grad. texts in math., vol. 120, (1989), Springer-Verlag Berlin · Zbl 0692.46022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.