Auxiliary model based multi-innovation extended stochastic gradient parameter estimation with colored measurement noises. (English) Zbl 1178.94137

Summary: For pseudo-linear regression identification models corresponding output error systems with colored measurement noises, a difficulty of identification is that there exist unknown inner variables and unmeasurable noise terms in the information vector. This paper presents an auxiliary model based multi-innovation extended stochastic gradient algorithm by using the auxiliary model method and by expanding the scalar innovation to an innovation vector. Compared with single innovation extended stochastic gradient algorithm, the proposed approach can generate highly accurate parameter estimates. The simulation results confirm this conclusion.


94A13 Detection theory in information and communication theory
93E10 Estimation and detection in stochastic control theory
62F99 Parametric inference
Full Text: DOI


[1] Fang, J.; Leyman, A. R.; Chew, Y. H.; Duan, H. P.: Some further results on blind identification of MIMO FIR channels via second-order statistics, Signal processing 87, No. 6, 1434-1447 (2007) · Zbl 1186.94118 · doi:10.1016/j.sigpro.2006.12.011
[2] Mahmoudi, A.; Karimi, M.: Estimation of the parameters of multichannel autoregressive signals from noisy observations, Signal processing 88, No. 11, 2777-2783 (2008) · Zbl 1151.94391 · doi:10.1016/j.sigpro.2008.06.004
[3] Zhao, S. K.; Man, Z. H.; Khoo, S. Y.; Wu, H. R.: Variable step-size LMS algorithm with a quotient form, Signal processing 89, No. 1, 67-76 (2009) · Zbl 1151.94441 · doi:10.1016/j.sigpro.2008.07.013
[4] Goodwin, G. C.; Sin, K. S.: Adaptive filtering prediction and control, (1984) · Zbl 0653.93001
[5] Ding, F.; Chen, T.: Performance analysis of multi-innovation gradient type identification methods, Automatica 43, No. 1, 1-14 (2007) · Zbl 1140.93488 · doi:10.1016/j.automatica.2006.07.024
[6] Ding, F.; Chen, H. B.; Li, M.: Multi-innovation least squares identification methods based on the auxiliary model for MISO systems, Applied mathematics and computation 187, No. 2, 658-668 (2007) · Zbl 1114.93101 · doi:10.1016/j.amc.2006.08.090
[7] Wang, D. Q.; Ding, F.: Auxiliary models based multi-innovation generalized extended stochastic gradient algorithms, Control and decision 23, No. 9, 999-1003+1010 (2008) · Zbl 1174.93720
[8] Zhang, J. B.; Ding, F.; Shi, Y.: Self-tuning control based on multi-innovation stochastic gradient parameter estimation, Systems & control letters 58, No. 1, 69-75 (2009) · Zbl 1154.93040 · doi:10.1016/j.sysconle.2008.08.005
[9] L.L. Han, F. Ding, Multi-innovation stochastic gradient algorithms for multi-input multi-output systems, Digital Signal Processing, doi:10.1016/j.dsp.2008.12.002, in press.
[10] L.L. Han, F. Ding, Identification for multirate multi-input systems using the multi-innovation identification theory, Computers & Mathematics with Applications 57 (9) (2009) 1438 – 1449. · Zbl 1186.93076 · doi:10.1016/j.camwa.2009.01.005
[11] Ljung, L.: System identification: theory for the user, (1999) · Zbl 0949.93509
[12] Dugard, L.; Landau, I. D.: Recursive output error identification algorithms theory and evaluation, Automatica 16, No. 5, 443-462 (1980) · Zbl 0441.93025 · doi:10.1016/0005-1098(80)90066-7
[13] Stoica, P.; Söderström, T.: Analysis of an output error identification algorithm, Automatica 17, No. 6, 861-863 (1981) · Zbl 0474.93064 · doi:10.1016/0005-1098(81)90074-1
[14] Ding, F.; Chen, T.: Combined parameter and output estimation of dual-rate systems using an auxiliary model, Automatica 40, No. 10, 1739-1748 (2004) · Zbl 1162.93376 · doi:10.1016/j.automatica.2004.05.001
[15] Ding, F.; Chen, T.: Identification of dual-rate systems based on finite impulse response models, International journal of adaptive control and signal processing 18, No. 7, 589-598 (2004) · Zbl 1055.93018 · doi:10.1002/acs.820
[16] Ding, F.; Liu, P. X.; Yang, H. Z.: Parameter identification and intersample output estimation for dual-rate systems, IEEE transactions on systems, man, and cybernetics, part A: systems and humans 38, No. 4, 966-975 (2008)
[17] Ding, F.; Qiu, L.; Chen, T.: Reconstruction of continuous-time systems from their non-uniformly sampled discrete-time systems, Automatica 45, No. 2, 324-332 (2009) · Zbl 1158.93365 · doi:10.1016/j.automatica.2008.08.007
[18] Wang, D. Q.; Ding, F.: Extended stochastic gradient identification algorithms for Hammerstein – Wiener ARMAX systems, Computers & mathematics with applications 56, No. 12, 3157-3164 (2008) · Zbl 1165.65308 · doi:10.1016/j.camwa.2008.07.015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.