Separation and duality in locally \(L^0\)-convex modules. (English) Zbl 1180.46055

The authors discuss the Hahn-Banach theorem and relevant convexity issues in the framework of a module over the ring of real measurable functions. The list of references reflects the previous research by the early 1980s. Some related results in a more general setting were obtained later by Boolean valued analysis and reflected, for instance, in [A.G.Kusraev and S.S.Kutateladze, “Subdifferential calculus.Theory and applications” (Russian) (Moskva:Nauka) (2007; Zbl 1137.49002)].


46N10 Applications of functional analysis in optimization, convex analysis, mathematical programming, economics
46N20 Applications of functional analysis to differential and integral equations
46H25 Normed modules and Banach modules, topological modules (if not placed in 13-XX or 16-XX)


Zbl 1137.49002
Full Text: DOI


[1] Aliprantis, C. D.; Border, K. C., Infinite Dimensional Analysis. A Hitchhiker’s Guide (2006), Springer · Zbl 1156.46001
[3] Brannath, W.; Schachermayer, W., A bipolar theorem for subsets of \(L_+^0(\Omega, F, P)\), (Séminaire de Probabilités XXXIII. Séminaire de Probabilités XXXIII, Lecture Notes in Math., vol. 1709 (1999), Springer), 349-354 · Zbl 0957.46020
[4] Breckner, W. W.; Scheiber, E., A Hahn-Banach type extension theorem for linear mappings into ordered modules, Mathematica, 19, 42, 13-27 (1977) · Zbl 0396.46002
[5] Cheridito, P.; Delbaen, F.; Kupper, M., Dynamic monetary risk measures for bounded discrete-time processes, Electron. J. Probab., 11 (2006) · Zbl 1184.91109
[6] Delbaen, F.; Schachermayer, W., The Mathematics of Arbitrage, Springer Finance, vol. 16 (2008), Springer
[7] Detlefsen, K.; Scandolo, G., Conditional and dynamic convex risk measures, Finance Stoch., 9, 4, 539-561 (2005) · Zbl 1092.91017
[9] Föllmer, H.; Penner, I., Convex risk measures and the dynamics of their penalty functions, Statist. Decisions, 24, 1, 61-96 (2006) · Zbl 1186.91119
[10] Föllmer, H.; Schied, A., Stochastic Finance, an Introduction in Discrete Time, de Gruyter Stud. Math., vol. 27 (2002) · Zbl 1125.91053
[11] Ghika, A. L., The extension of general linear functionals in semi-normed modules, Acad. Rep. Pop. Romane Bul. Sti. Ser. Mat. Fiz. Chim., 2, 399-405 (1950)
[12] Harte, R. E., A generalization of the Hahn-Banach theorem, J. London Math. Soc., 40, 283-287 (1965) · Zbl 0132.08602
[14] Kantorovic, L. V., The method of successive approximations for functional equations, Acta Math., 71, 63-97 (1939) · Zbl 0021.13604
[16] Kutateladze, S. S., Convex operators, Uspekhi Mat. Nauk, 1, 34, 167-196 (1979) · Zbl 0449.47074
[17] Kutateladze, S. S., Modules admitting convex analysis, Soviet Math. Dokl., 3, 21 (1980) · Zbl 0519.47024
[18] Kutateladze, S. S., Convex analysis in modules, Siberian Math. J., 4, 22, 118-128 (1981) · Zbl 0477.46017
[19] Orhon, M., On the Hahn-Banach theorem for modules over \(C(S)\), J. London Math. Soc. (2), 1, 363-368 (1969) · Zbl 0181.40102
[20] Orhon, M.; Terzioglu, T., Diagonal operators on spaces of measurable functions, Mem. Soc. Math. Fr., 31-32, 265-270 (1972) · Zbl 0245.47028
[21] Vincent-Smith, G., The Hahn-Banach theorem for modules, Proc. London Math. Soc. (3), 17, 72-90 (1967) · Zbl 0146.37302
[22] Vuza, D., The Hahn-Banach extension theorem for modules over ordered rings, Rev. Roumaine Math. Pures Appl., 9, 27, 989-995 (1982) · Zbl 0505.06010
[23] Welland, R., On Köthe spaces, Trans. Amer. Math. Soc., 112, 267-277 (1964) · Zbl 0122.11501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.