×

Fusion rules and modular transformations in 2D conformal field theory. (English) Zbl 1180.81120

Summary: We study conformal field theories with a finite number of primary fields with respect to some chiral algebra. It is shown that the fusion rules are completely determined by the behavior of the characters under the modular group. We illustrate with some examples that conversely the modular properties of the characters can be derived from the fusion rules. We propose how these results can be used to find restrictions on the values of the central charge and conformal dimensions.

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81R10 Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, \(W\)-algebras and other current algebras and their representations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Belavin, A. A.; Polyakov, A. M.; Zamolodchikov, A. B., Nucl. Phys., B241, 333 (1984) · Zbl 0661.17013
[2] Friedan, D.; Shenker, S. H., Nucl. Phys., B281, 509 (1987)
[3] Cardy, J. L., Nucl. Phys., B270 [FS16], 186 (1986)
[4] Gepner, D., Nucl. Phys., B287, 111 (1987)
[10] Friedan, D.; Qiu, Z.; Shenker, S. H., Phys. Lett., 151B, 21 (1985)
[11] Knizhnik, V.; Zamolodchikov, A. B., Nucl. Phys., B247, 83 (1984) · Zbl 0661.17020
[12] Gepner, D.; Witten, E., Nucl. Phys., B278, 493 (1986)
[13] Gepner, D.; Qiu, Z., Nucl. Phys., B285, 423 (1987)
[14] Eguchi, T.; Ooguri, H., Nucl. Phys., B282, 308 (1987)
[15] Vafa, C., Phys. Lett., 199B, 191 (1987)
[16] Friedan, D.; Qiu, Z.; Shenker, S. H., Phys. Rev. Lett., 52, 1575 (1984)
[17] Friedan, D.; Qiu, Z.; Shenker, S. H., Comm. Math. Phys., 107, 535 (1986) · Zbl 0608.17010
[18] Goddard, P.; Kent, A.; Olive, D., Comm. Math. Phys., 103, 105 (1986) · Zbl 0588.17014
[19] Fateev, V. A.; Zamolodchikov, A. B., Nucl. Phys., B280 [FS18], 644 (1987)
[24] Dixon, L.; Harvey, J.; Vafa, C.; Witten, E., Nucl. Phys., B274, 285 (1986)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.