×

Second order nonlinear spatial stability analysis of compressible mixing layers. (English) Zbl 1185.76216

Editorial remark: No review copy delivered.

MSC:

76-XX Fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] A. Michalke, ”On the inviscid instability of the hyperbolic-tangent velocity profile,” J. Fluid Mech. JFLSA719, 543 (1964).JFLSA70022-1120 · Zbl 0129.20302
[2] A. Michalke, ”Vortex formation in a free boundary layer according to stability theory,” J. Fluid Mech. JFLSA722, 371 (1965).JFLSA70022-1120
[3] A. Michalke, ”On spatially growing disturbance in an inviscid shear layer,” J. Fluid Mech. JFLSA723, 521 (1965).JFLSA70022-1120
[4] G. Brown and A. Roshko, ”On the density effects and large structure in turbulence mixing layers,” J. Fluid Mech. JFLSA764, 775 (1974).JFLSA70022-1120
[5] M. Lesson, J. A. Fox, and H. M. Zien, ”On the inviscid stability of the laminar mixing of two parallel streams of a compressible fluid,” J. Fluid Mech. JFLSA723, 355 (1965).JFLSA70022-1120
[6] M. E. Goldstein and S. J. Leib, ”Nonlinear evolution of oblique waves on compressible shear layers,” J. Fluid Mech. JFLSA7207, 73 (1989).JFLSA70022-1120 · Zbl 0681.76052
[7] C. E. Grosch and T. L. Jackson, ”Inviscid spatial stability of a three-dimensional, compressible mixing layer,” J. Fluid Mech. JFLSA7231, 35 (1991).JFLSA70022-1120 · Zbl 0850.76234
[8] T. L. Jackson and C. E. Grosch, ”Inviscid spatial stability of a compressible mixing layer,” J. Fluid Mech. JFLSA7208, 609 (1989).JFLSA70022-1120 · Zbl 0681.76049
[9] M. J. Day, W. C. Reynolds, and N. N. Mansour, ”The structure of the compressible reacting mixing layer: Insights from linear stability analysis,” Phys. Fluids PHFLE610, 993 (1998).PHFLE61070-6631 · Zbl 1185.76855
[10] O. H. Planché and W. C. Reynolds, ”Heat release effects on mixing in supersonic reacting free shear-layers,” AIAA Paper AIAA-92 (1992).
[11] S. A. Ragab and J. L. Wu, ”Linear instability in two-dimensional compressible mixing layers,” Phys. Fluids A PFADEB1, 957 (1989).PFADEB0899-8213
[12] H. Schade, ”Contribution to the nonlinear stability theory of inviscid shear layers,” Phys. Fluids PFLDAS7, 623 (1964).PFLDAS0031-9171 · Zbl 0124.20002
[13] A. W. Vreman, N. D. Sandham, and K. H. Luo, ”Compressible mixing layer growth rate and turbulence characteristics,” J. Fluid Mech. JFLSA7320, 235 (1996).JFLSA70022-1120 · Zbl 0875.76159
[14] D. Papamoschou and A. Roshko, ”The compressible turbulent shear layer: An experimental study,” J. Fluid Mech. JFLSA7197, 453 (1988).JFLSA70022-1120
[15] F. Ladeinde and K. E. Torrance, ”Convection in rotating, horizontal cylinders with radial and normal gravity forces,” J. Fluid Mech. JFLSA7228, 361 (1991).JFLSA70022-1120 · Zbl 0723.76086
[16] N. D. Sandham and W. C. Reynolds, ”Compressible mixing layer: Linear theory and direct simulation,” AIAA J. AIAJAH28, 618 (1990).AIAJAH0001-1452
[17] J. T. Stuart, ”On the non-linear mechanics of hydrodynamic stability,” J. Fluid Mech. JFLSA74, 1 (1958).JFLSA70022-1120
[18] E. Palm, ”On the tendency towards hexagonal cells in steady convection,” J. Fluid Mech. JFLSA78, 183 (1960).JFLSA70022-1120 · Zbl 0100.23302
[19] J. T. Stuart, ”On finite amplitude oscillations in laminar mixing layers,” J. Fluid Mech. JFLSA729, 417 (1967).JFLSA70022-1120
[20] J. Watson, ”On spatially-growing finite disturbances in plane Poiseuille shear flow,” J. Fluid Mech. JFLSA714, 211 (1962).JFLSA70022-1120
[21] P. M. Eagles, ”On the stability of Taylor vortices by fifth-order amplitude expansions,” J. Fluid Mech. JFLSA749, 529 (1972).JFLSA70022-1120
[22] J. T. C. Liu, ”Finite-amplitude instability of the compressible laminar wake. Weakly nonlinear theory,” Phys. Fluids PFLDAS12, 1763 (1969).PFLDAS0031-9171 · Zbl 0191.25404
[23] P. Huerre and P. A. Monkewitz, ”Local and global instabilities in spatially developing flows,” Annu. Rev. Fluid Mech. ARVFA322, 473 (1990).ARVFA30066-4189 · Zbl 0734.76021
[24] M. E. Goldstein and L. S. Hultgren, ”Nonlinear spatial evolution of an externally excited instability wave in a free shear layer,” J. Fluid Mech. JFLSA7197, 295 (1988).JFLSA70022-1120 · Zbl 0656.76052
[25] M. E. Goldstein and S. J. Leib, ”Nonlinear roll-up of externally excited free shear layers,” J. Fluid Mech. JFLSA7191, 481 (1988).JFLSA70022-1120 · Zbl 0645.76061
[26] H. W. Press, A. S. Teukolsky, T. W. Vetterling, and P. B. Flannery, Numerical Recipes in FORTRAN (Cambridge University Press, Cambridge, 1992). · Zbl 0778.65002
[27] T. F. Balsa and M. E. Goldstein, ”On the instabilities of supersonic mixing layers: A high-Mach-number asymptotic theory,” J. Fluid Mech. JFLSA7216, 585 (1990).JFLSA70022-1120 · Zbl 0698.76069
[28] J. T. Stuart, ”On the non-linear mechanics of wave disturbances in stable and unstable parallel flows. Part 1. The basic behavior in plane Poiseuille flow,” J. Fluid Mech. JFLSA79, 353 (1960).JFLSA70022-1120
[29] J. Watson, ”On the nonlinear mechanics of wave disturbances in stable and unstable parallel flows. Part 2. The development of a solution for plane Poiseuille flow and for plane Couette flow,” J. Fluid Mech. JFLSA79, 371 (1960).JFLSA70022-1120
[30] H. Gropengiesser, ”On the stability of free shear layers in compressible flows,” NASA Technical Report No. TT F-12786, 1969.
[31] S. Ghosh and W. H. Matthaeus, ”Low Mach number two-dimensional hydrodynamic turbulence: Energy budget and density fluctuations in a polytropic fluid,” Phys. Fluids A PFADEB4, 148 (1992).PFADEB0899-8213 · Zbl 0850.76276
[32] F. Ladeinde, E. E. O’Brien, X. Cai, and W. Liu, ”Advection by polytropic compressible turbulence,” Phys. Fluids PHFLE67, 2848 (1995).PHFLE61070-6631 · Zbl 1026.76532
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.