## Existence of solutions for impulsive integral boundary value problems of fractional order.(English)Zbl 1187.34038

Summary: We study a nonlinear impulsive boundary value problem for differential equations of fractional order with boundary conditions given by
$\begin{cases} ^cD^qx(t)=f(t,x(t)),\quad 1<q\leq 2,\;t\in {\mathcal J}_1=[0,1]\setminus \{t_1,t_2,\dots,t_p\},\\ \Delta x(t_k)=I_k(x(t^-_k)),\quad \Delta x'(t_k)=J_k(x(t^-_k)),\;t_k\in (0,1),\;k=1,2,\dots,p,\\ \alpha x(0)+\beta x'(0)=\int^1_0 q_1(x(s))\,ds,\quad \alpha x(1) +\beta x'(1)=\int^1_0 q_2(x(s))\,ds,\end{cases}\tag{1}$
where $$^cD$$ is the Caputo fractional derivative, $$f:J\times \mathbb R\to\mathbb R$$ is a continuous function, $$J=[0,1]$$, $$I_j,J_jk:\mathbb R\to\mathbb R$$, $$\Delta x(t_k)=x(t^+_k)-x(t^-_k)=\lim_{h\to0^+}x(t_k+h)$$, $$x(t^-_k)=\lim_{h\to 0^-}x(t_k+h)$$, $$k=1,2,\dots,p$$ for $$0=t_0<t_1<t_2<\cdots<t_p<t_{p+1}=1$$ and $$q_1,q_2:\mathbb R\to\mathbb R$$ and $$\alpha>0$$, $$\beta\geq 0$$ are real numbers.
We prove some existence results by applying the contraction mapping principle and Krasnoselskii’s fixed point theorem.

### MSC:

 34B37 Boundary value problems with impulses for ordinary differential equations 47N20 Applications of operator theory to differential and integral equations 34B10 Nonlocal and multipoint boundary value problems for ordinary differential equations
Full Text:

### References:

 [1] Ahmad, B.; Nieto, J. J., Existence results for nonlinear boundary value problems of fractional integrodifferential equations with integral boundary conditions, Bound. Value Probl. (2009), 11 pages. Article ID 708576 · Zbl 1167.45003 [2] Ahmad, B.; Sivasundaram, S., Existence and uniqueness results for nonlinear boundary value problems of fractional differential equations with separated boundary conditions, Commun. Appl. Anal., 13, 121-228 (2009) · Zbl 1180.34003 [3] Ahmad, B.; Nieto, J. J., Existence of solutions for nonlocal boundary value problems of higher order nonlinear fractional differential equations, Abstr. Appl. Anal. (2009), 9 pages. Article ID 494720 · Zbl 1186.34009 [4] Chang, Y.-K.; Nieto, J. J., Some new existence results for fractional differential inclusions with boundary conditions, Math. Comput. Modelling, 49, 605-609 (2009) · Zbl 1165.34313 [5] Daftardar-Gejji, V.; Bhalekar, S., Boundary value problems for multi-term fractional differential equations, J. Math. Anal. Appl., 345, 754-765 (2008) · Zbl 1151.26004 [6] Gafiychuk, V.; Datsko, B.; Meleshko, V., Mathematical modeling of time fractional reaction-diffusion systems, J. Comput. Appl. Math., 220, 215-225 (2008) · Zbl 1152.45008 [7] Ibrahim, R. W.; Darus, M., Subordination and superordination for univalent solutions for fractional differential equations, J. Math. Anal. Appl., 345, 871-879 (2008) · Zbl 1147.30009 [8] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., (Theory and Applications of Fractional Differential Equations. Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, vol. 204 (2006), Elsevier Science B.V.: Elsevier Science B.V. Amsterdam) · Zbl 1092.45003 [9] Ladaci, S.; Loiseau, J. L.; Charef, A., Fractional order adaptive high-gain controllers for a class of linear systems, Commun. Nonlinear Sci. Numer. Simul., 13, 707-714 (2008) · Zbl 1221.93128 [10] Lakshmikantham, V.; Leela, S.; Vasundhara Devi, J., Theory of Fractional Dynamic Systems (2009), Cambridge Academic Publishers: Cambridge Academic Publishers Cambridge · Zbl 1188.37002 [11] Lazarević, M. P., Finite time stability analysis of $$PD^α$$ fractional control of robotic time-delay systems, Mech. Res. Comm., 33, 269-279 (2006) · Zbl 1192.70008 [12] Podlubny, I., Fractional Differential Equations (1999), Academic Press: Academic Press San Diego · Zbl 0918.34010 [13] Rida, S. Z.; El-Sherbiny, H. M.; Arafa, A. A.M., On the solution of the fractional nonlinear Schrödinger equation, Phys. Lett., 372, 553-558 (2008) · Zbl 1217.81068 [14] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional Integrals and Derivatives: Theory and Applications (1993), Gordon and Breach: Gordon and Breach Yverdon · Zbl 0818.26003 [15] Ahmad, B.; Alsaedi, A.; Alghamdi, B., Analytic approximation of solutions of the forced Duffing equation with integral boundary conditions, Nonlinear Anal. RWA, 9, 1727-1740 (2008) · Zbl 1154.34311 [16] Boucherif, A., Second-order boundary value problems with integral boundary conditions, Nonlinear Anal., 70, 364-371 (2009) · Zbl 1169.34310 [17] Lakshmikantham, V.; Bainov, D. D.; Simeonov, P. S., Theory of Impulsive Differential Equations (1989), World Scientific: World Scientific Singapore · Zbl 0719.34002 [18] Rogovchenko, Y. V., Impulsive evolution systems: Main results and new trends, Dynam. Contin. Discrete Impuls. Systems, 3, 57-88 (1997) · Zbl 0879.34014 [19] Samoilenko, A. M.; Perestyuk, N. A., Impulsive Differential Equations (1995), World Scientific: World Scientific Singapore · Zbl 0837.34003 [20] Zavalishchin, S. T.; Sesekin, A. N., Dynamic Impulse Systems: Theory and Applications (1997), Kluwer Academic Publishers Group: Kluwer Academic Publishers Group Dordrecht · Zbl 0880.46031 [21] Ahmad, B.; Sivasundaram, S., Existence results for nonlinear impulsive hybrid boundary value problems involving fractional differential equations, Nonlinear Anal. Hybrid Syst., 3, 251-258 (2009) · Zbl 1193.34056 [22] Smart, D. R., Fixed Point Theorems (1980), Cambridge University Press · Zbl 0427.47036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.