Strong convergence theorem by a new hybrid method for equilibrium problems and relatively nonexpansive mappings. (English) Zbl 1187.47054

Summary: We prove a strong convergence theorem for finding a common element of the set of solutions of an equilibrium problem and the set of fixed points of a relatively nonexpansive mapping in a Banach space by using a new hybrid method. Using this theorem, we obtain two new results for finding a solution of an equilibrium problem and a fixed point of a relatively nonexpansive mapping in a Banach space.


47J25 Iterative procedures involving nonlinear operators
47H10 Fixed-point theorems
47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc.
47N10 Applications of operator theory in optimization, convex analysis, mathematical programming, economics
65J15 Numerical solutions to equations with nonlinear operators
Full Text: DOI EuDML


[5] doi:10.2307/2032162 · Zbl 0050.11603 · doi:10.2307/2032162
[6] doi:10.1016/0022-247X(79)90024-6 · Zbl 0423.47026 · doi:10.1016/0022-247X(79)90024-6
[7] doi:10.1016/0022-247X(80)90323-6 · Zbl 0437.47047 · doi:10.1016/0022-247X(80)90323-6
[9] doi:10.1090/S0002-9939-97-04033-1 · Zbl 0888.47034 · doi:10.1090/S0002-9939-97-04033-1
[10] doi:10.1007/BF01190119 · Zbl 0797.47036 · doi:10.1007/BF01190119
[12] doi:10.1007/s10957-007-9187-z · Zbl 1147.47052 · doi:10.1007/s10957-007-9187-z
[13] doi:10.1016/j.jmaa.2006.08.036 · Zbl 1122.47056 · doi:10.1016/j.jmaa.2006.08.036
[14] doi:10.1016/S0022-247X(02)00458-4 · Zbl 1035.47048 · doi:10.1016/S0022-247X(02)00458-4
[19] doi:10.1137/S105262340139611X · Zbl 1101.90083 · doi:10.1137/S105262340139611X
[22] doi:10.1155/S1687182004310089 · Zbl 1088.47054 · doi:10.1155/S1687182004310089
[23] doi:10.1016/0362-546X(91)90200-K · Zbl 0757.46033 · doi:10.1016/0362-546X(91)90200-K
[24] doi:10.1016/0022-247X(83)90112-9 · Zbl 0519.49010 · doi:10.1016/0022-247X(83)90112-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.