Regularity of weak solutions to the Navier-Stokes equations in exterior domains. (English) Zbl 1189.76115

Summary: Let \(u\) be a weak solution of the Navier-Stokes equations in an exterior domain \({\Omega \subset \mathbb{R}^3}\) and a time interval \([0, T[\), \(0 < T \leq \infty \), with initial value \(u _{0}\), external force \(f = \text{div} F\), and satisfying the strong energy inequality. It is well known that global regularity for \(u\) is an unsolved problem unless we state additional conditions on the data \(u _{0}\) and \(f\) or on the solution \(u\) itself such as Serrin’s condition \({\| u \|_{L^s(0,T; L^q(\Omega))} < \infty}\) with \(2 < s < \infty\), \(\frac{2}{s} + \frac{3}{q} =1\). In this paper, we generalize results on local in time regularity for bounded domains [see R. Farwig et al., Indiana Univ. Math. J. 56, No. 5, 2111–2131 (2007; Zbl 1175.35100); J. Math. Fluid Mech. 11, No. 3, 428–442 (2009; Zbl 1185.35162); in: Parabolic and Navier-Stokes equations. Part 1. Proceedings of the confererence, Bȩdlewo, Poland, September 10–17, 2006. Warsaw: Polish Academy of Sciences, Institute of Mathematics. Banach Center Publications 81, Pt. 1, 175–184 (2008; Zbl 1154.35416)] to exterior domains. If, e.g., \(u\) fulfills Serrin’s condition in a left-side neighborhood of \(t\) or if the norm \({\| u \|_{L^{s'}(t-\delta,t; L^q(\Omega))}}\) converges to 0 sufficiently fast as \(\delta \rightarrow 0+\), where \({\frac{2}{s'} + \frac{3}{q} > 1}\), then \(u\) is regular at \(t\). The same conclusion holds when the kinetic energy \({\frac{1}{2}\| u(t) \|_2^2}\) is locally Hölder continuous with exponent \({\alpha > \frac{1}{2}}\).


76D05 Navier-Stokes equations for incompressible viscous fluids
35Q30 Navier-Stokes equations
35B65 Smoothness and regularity of solutions to PDEs
Full Text: DOI


[1] Adams R., Fournier J.: Sobolev Spaces. Academic Press, New York (2003) · Zbl 1098.46001
[2] Farwig R., Kozono H., Sohr H.: Local in time regularity properties of the Navier-Stokes equations. Indiana Univ. Math. J. 56, 2111-2131 (2007) · Zbl 1175.35100
[3] Farwig R., Kozono H., Sohr H.: Very weak solutions of the Navier-Stokes equations in exterior domains with nonhomogeneous data. J. Math. Soc. Japan 59, 127-150 (2007) · Zbl 1107.76022
[4] Farwig, R., Kozono, H., Sohr, H.: Very weak, weak and strong solutions to the Navier-Stokes system. Topics on partial differential equations, In: Kaplický, P., Nečasová, Š. (eds.) J. Nečas Center Math. Modeling, Prague. Lecture Notes, vol. 2, pp. 1-54 (2007) · Zbl 1107.76022
[5] Farwig R., Kozono H., Sohr H.: Energy-based regularity criteria for the Navier-Stokes equations. J. Math. Fluid Mech. 11, 1-14 (2008)
[6] Farwig R., Kozono H., Sohr H.: Criteria of local in time regularity of the Navier-Stokes equations beyond Serrin’s condition. Banach Center Publ. 81, 175-184 (2008) · Zbl 1154.35416
[7] Farwig R., Sohr H.: Generalized resolvent estimates for the Stokes system in bounded and unbounded domains. J. Math. Soc. Japan 46, 607-643 (1994) · Zbl 0819.35109
[8] Galdi, G. P.; Galdi, G. P. (ed.), An introduction to the Navier-Stokes initial value problem, 1-70 (2000), Basel · Zbl 1108.35133
[9] Giga Y., Sohr H.: On the Stokes operator in exterior domains. J. Fac. Sci. Univ. Tokyo, Sec. IA 36, 103-130 (1989)
[10] Giga Y., Sohr H.: Abstract Lp estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains. J. Funct. Anal. 102, 72-94 (1991) · Zbl 0739.35067
[11] Iwashita H.: Lq − Lr estimates for solutions of the nonstationary Stokes equations in an exterior domain and the Navier-Stokes initial value problems in Lq spaces. Math. Ann. 285, 265-288 (1989) · Zbl 0659.35081
[12] Komo, C.: Regularität von schwachen Lösungen der Navier-Stokes-Gleichungen im Außengebiet, Diploma Thesis, Darmstadt University of Technology, Darmstadt (2009)
[13] Miyakawa T., Sohr H.: On energy inequality, smoothness and large time behavior in L2 for weak solutions of the Navier-Stokes equations in exterior domains. Math. Z. 199, 455-478 (1988) · Zbl 0642.35067
[14] Sohr H.: The Navier-Stokes-Equations: An Elementary Functional Analytic Approach. Birkhäuser, Basel (2001) · Zbl 0983.35004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.