Simulation of granular flow in a fluid applied to sedimentation. (English) Zbl 1189.76681

Summary: We present a numerical model applied to the simulation of granular flow in a fluid. The description of particle flow is discrete. Particle trajectories are calculated by Newton’s law and collisions are described by a soft-sphere approach. The fluid flow is modelled using the Navier-Stokes equation. The momentum transfer is directly calculated from the stress tensor around particles. This model is validated through the calculation of the drag coefficient, making it possible to discern the limitations on the Reynolds number according to the mesh size and the computational time. The accuracy of the Navier-Stokes solver is estimated by the calculation of the hydrodynamic drag of a fluid flowing through a porous media at low Reynolds numbers. The analysis shows that dense media require a smaller mesh size than diluted media. This model is then used to describe the sedimentation of two particles to reproduce the “draft, kiss and tumbled” effect. This shows the capacity of the model to reproduce hydrodynamic interactions acting on the scale of the particle. The terminal velocity of particles is in good agreement with experiments. Simulations of the sedimentation of a system of particles makes it possible to recover the Richardson and Zaki law in an acceptable CPU time.


76T25 Granular flows
76M20 Finite difference methods applied to problems in fluid mechanics
Full Text: DOI


[1] Balzer, G., Boëlle, A., Simonin, O.: ISEF Fluidisation VIII, Tours, 1125 (1995)
[2] Boëlle, A.: Thèse de doctorat. Université de Paris 6 (1997)
[3] Ferschneider, G., Mège P.: Revue de l’IFP 51, 2 (1996)
[4] Simonin, O.: 5th Workshop on two phase flow predictions, 19-22-03/90, Erlangen RFA
[5] Soo, S.: (1996) Fluid dynamics of multiphase systems (Baisdell Publishing Co. (1967) · Zbl 0173.52901
[6] Ergun, S.: Chemical engineering progress. 48, 2 (1952)
[7] Hu, H.H., Crochet, M.J., Joseph, D.D.: AHPCRC Preprint 91–45 (1991)
[8] Hu, H.H., Joseph, D.D., Fortes, A.F.: Int. Video J. of Eng. Research 2 (1992)
[9] Glowinski, R., Pan, T.W., Periaux, J.: Fictitious domain methods for the simulation of stokes flow past a moving disk, personal communication (1996)
[10] Glowinski, R., Pan, T.W., Hesla, T.I., Joseph, D.D., Periaux, J.: J.Comput. Phys. 169 (2001)
[11] Xu, B.H., Yu, A.B., Chew, S.J., Zulli, P.: Numerical simulation of the gas-solid flow in a bed with lateral gas blasting. Powder Technology 109, 109, 13 (2000)
[12] Hoomans, B.P.B., Kuipers, J.A.M, Briels, W.J., Van Swaaij, W.P.M.: Chem. Engng. Sci. 51 (1996)
[13] Kalthoff, W., Schwarzer, S., Ristow, G.H., Herrmann, H.J.: Int. J. Mod. Phys. C 7, 4 (1996)
[14] Schwarzer, S.: Phys. Rev. E 52, 6461 (1995)
[15] Tsuji, Y., Tanaka, T.: Int. J. Mod. Phys. B 7, 9–10 (1993)
[16] Tsuji, Y., Kawaguchi, T., Tanaka, T.: Powder technology 77 (1993)
[17] Kawaguchi, T., Tanaka, T., Tsuji, Y.: Powder technology 20 (1997)
[18] Tanaka, T., Kawaguchi, T., Tsuji, Y.: Int. J. Mod. Phys. B 7 (1993)
[19] Xu, B.H., Yu, A.B.: Chem. Engng. Sci. 52, 16 (1997)
[20] Komnik, A., Harting, J., Herrmann, H.J.: Journal of statistical mechanics: theory and experiment (2004) · Zbl 1073.82604
[21] Ladd, A.J.C.: J. Fluid Mech. 271 (1994)
[22] Ladd, A.J.C., Verberg, R.: J. Stat. Phys. 104 (2001)
[23] Höfler, K., Räumliche Simulation von Zweiphasenflüssen, Master’s thesis, Universität Stuttgart, (1997)
[24] Fogelson, A.L., Peskin, C.S.: J. Comput. Phys. 79, 50 (1988)
[25] Wachmann, B.: Microsimulation of Two-Phase System in 3D, Doctoral Thesis (1999), University of Stuttgart
[26] Komiwes, V., Herrmann, H.J., Mège, Ph., Meimon, Y.: Direct Simulation of Granular Flow with Fluid, session 20 Granular Materials of the joint Conferences EPS: 17th Meeting of the Consensed matter division SFP: 6eme Journées de la Matière Condensée - Grenoble (France) (August 25th - 28th) (1998)
[27] Fonseca, F., Herrmann, H.J.: Simulation of the sedimentation of a falling oblate ellipsoid. Physica A 345, 341–355 (2005)
[28] Fonseca, F., Herrmann, H.J.: Sedimentation of oblate ellipsoids at low and moderate Reynolds numbers. Physica A 342, 447–461 (2004)
[29] Cundall, P.A., Strack, O.D.L.: Geotechnique 29, 47 (1979)
[30] Ristow, G.: Int. J. of Mod. Phys. C 3, 6 (1992)
[31] Herrmann, H.J.: J. Phys. A 26, 373 (1993)
[32] Form, W., Ito, N., Kohring, G.A.: Int. J. of Mod. Phys. C 4, 6 (1993)
[33] Allen, M.P., Tildesley, D.J.: Computer simulation of liquids. Oxford: Oxford University Press, 1987 · Zbl 0703.68099
[34] Landau, L.D., Lifschitz, E.M.: Hydrodynamik, Vol. 6 of Lehrbuch der Theoretischen Physik, 5th ed., Akademie-Verlag, Berlin, (1991)
[35] Chorin, A.J.: J. of Comput. Phys. 2 (1967) · Zbl 0168.46501
[36] Peyret, R., Taylor, T.D.: Computational methods for fluid flow. Springer Series in Computational Physics, Springer (1983) · Zbl 0514.76001
[37] Vorst, H.A.V.D.: Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM. J. Sci. Statist. Comput. 13, (1992) · Zbl 0761.65023
[38] Schiller, V.L., Naumann, A.: Uber die grundlegenden Berechnungen bei der Schwerkraftaufbereitung. Z. Ver. Dtsch. Ing. 77
[39] Sangani, A., Acrivos, A.: Int. J. Multiphase Flow 8, 193 (1982) · Zbl 0541.76041
[40] Ladd, A.J.C.: J. Chem. Phys. 88, 5051 (1988)
[41] Richardson, J.F., Zaki, W.N.: Trans. Instn. Chem. Engrs. 32 (1954)
[42] Nicolai, H., Herzhaft, B., Hinch, E.J., Oger, L., Guazzelli, E.: Phys. Fluid 7 (1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.