×

Craya decomposition using compactly supported biorthogonal wavelets. (English) Zbl 1190.42018

The authors study a new method using biorthogonal compactly supported wavelest to obtain a local Craya-Herring decomposition, that is to split vector-valued function spaces into a curl-free space and a divergence-free space which is in turn split into two orthogonal spaces the first of which has functions with third component zero and the first two components of functions in the second is a two-dimensional gradient function. The motivation for this work is geophysical turbulence and applications are shown for isotropic, rotating, and stratified turbulent flows. The results of a number of numerical experiments are presented.

MSC:

42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
76M25 Other numerical methods (fluid mechanics) (MSC2010)
86A10 Meteorology and atmospheric physics
PDFBibTeX XMLCite
Full Text: DOI HAL

References:

[1] Battle, G.; Federbush, P., Divergence-free vector wavelets, Michigan Math. J., 40, 181-195 (1993) · Zbl 0798.42022
[2] Bos, W. J.T.; Liechtenstein, L.; Schneider, K., Small scale intermittency in anisotropic turbulence, Phys. Rev. E, 76, 046310 (2007)
[3] Cambon, C., Turbulence and vortex structures in rotating and stratified flows, Eur. J. Mech. B Fluids, 20, 4, 489-510 (2001) · Zbl 1047.76029
[4] Cambon, C.; Jacquin, L., Spectral approach to non-isotropic turbulence subjected to rotation, J. Fluid Mech., 202, 295-317 (1989) · Zbl 0667.76084
[5] Cambon, C.; Teissedre, C.; Jeandel, D. C., Étude d’effets couplés de déformation et de rotation sur une turbulence homogène, J. Méc. Théor. Appl., 4, 5, 629-657 (1985) · Zbl 0581.76066
[6] Craya, A., Contribution à l’analyse de la turbulence associée à des vitesses moyennes, P.S.T. Ministère de l’Air (Paris), 345 (1958)
[7] Deriaz, E.; Perrier, V., Divergence-free wavelets in 2D and 3D, application to the Navier-Stokes equations, J. Turbul., 7, 3 (2006)
[8] Deriaz, E.; Domingues, M. O.; Perrier, V.; Schneider, K.; Farge, M., Divergence-free wavelets for coherent vortex extraction in 3D homogeneous isotropic turbulence, (ESAIM Proc., vol. 16 (2007)), 146-163 · Zbl 1206.76029
[9] Deriaz, E.; Perrier, V., Orthogonal Helmholtz decomposition in arbitrary dimension using divergence-free and curl-free wavelets, Appl. Comput. Harmon. Anal., 26, 2, 249-269 (2009) · Zbl 1170.35008
[10] Farge, M., Wavelet transforms and their application to turbulence, Annu. Rev. Fluid Mech., 24, 395-457 (1992) · Zbl 0743.76042
[11] Farge, M.; Azzalini, A.; Mahalov, A.; Nicolaenko, B.; Tse, F.; Pellegrino, G.; Schneider, K., Vortex tubes in shear-stratified turbulence, (Bajer, C.; Moffatt, H. K., IUTAM Symposium on Tubes, Sheets and Singularities in Fluid Dynamics (2003), Kluwer Academic Publishers), 217-228 · Zbl 1142.76395
[12] Farge, M.; Rabreau, G., Transformée en ondelettes pour détecter et analyser les structures cohérentes dans les écoulements turbulents bidimensionnels, C. R. Acad. Sci. Paris Sér. II, 307, 1479-1486 (1988)
[13] Godeferd, F. S.; Cambon, C., Detailed investigation of energy transfers in homogeneous stratified turbulence, Phys. Fluids, 6, 2084 (1994) · Zbl 0830.76039
[14] Grossmann, A.; Morlet, J., Decomposition of Hardy functions into square integrable wavelets of constant shape, SIAM J. Math. Anal., 15, 723-736 (1984) · Zbl 0578.42007
[15] Herring, J. R., Approach of axisymmetric turbulence to isotropy, Phys. Fluids, 17, 859-872 (1974) · Zbl 0366.76045
[16] Kishida, K.; Araki, K.; Kishiba, S.; Suzuki, K., Local or nonlocal? Orthonormal divergence-free wavelet analysis of nonlinear interactions in turbulence, Phys. Rev. Lett., 83, 26, 5487-5490 (1999)
[17] Kishida, K.; Araki, K., Orthogonal divergence-free wavelet analysis of spatial correlation between kinetic energy and nonlinear transfer in turbulence, (Kaneda, Y.; Gotoh, T., Statistical Theories and Computational Approaches to Turbulence (2002), Springer-Verlag: Springer-Verlag Tokyo) · Zbl 1082.76546
[18] Lemarié-Rieusset, P. G., Analyses multi-résolutions non orthogonales, commutation entre projecteurs et dérivation et ondelettes vecteurs à divergence nulle, Rev. Mat. Iberoamericana, 8, 2, 221-236 (1992) · Zbl 0874.42022
[19] Lemarié-Rieusset, P. G., Un théorème d’inexistence pour les ondelettes vecteurs à divergence nulle, C. R. Acad. Sci. Paris Sér. I, 319, 811-813 (1994) · Zbl 0831.42024
[20] Lemarié-Rieusset, P. G., On the existence of compactly supported dual wavelets, Appl. Comput. Harmon. Anal., 3, 117-118 (1997) · Zbl 0865.42028
[22] Liechtenstein, L.; Godeferd, F. S.; Cambon, C., Nonlinear formation of structures in rotating stratified turbulence, J. Turbul., 6, 24 (2005)
[23] Meneveau, C., Analysis of turbulence in the orthonormal wavelet representation, J. Fluid Mech., 232, 469-520 (1991) · Zbl 0749.76033
[24] Pedlosky, J., Geophysical Fluid Dynamics (1979), Springer-Verlag: Springer-Verlag New York · Zbl 0429.76001
[25] Riley, J. J.; Metcalfe, R. W.; Weissman, M. A., Direct numerical simulations of homogeneous turbulence in density-stratified fluids, (AIP Conf. Proc., vol. 76 (1981)), 79
[26] Sagaut, P.; Cambon, C., Homogeneous Turbulence Dynamics (2008), Cambridge University Press · Zbl 1154.76003
[27] Schneider, K.; Vasilyev, O., Wavelet methods in computational fluid dynamics, Annu. Rev. Fluid Mech., 42, 473-503 (2010) · Zbl 1345.76085
[28] Urban, K., On divergence-free wavelets, Adv. Comput. Math., 4, 1, 2, 51-82 (1995) · Zbl 0822.42020
[29] Urban, K., Using divergence-free wavelets for the numerical solution of the Stokes problem, (AMLI’96: Proceedings of the Conference on Algebraic Multilevel Iteration Methods with Applications, vol. 2 (1996), University of Nijmegen: University of Nijmegen The Netherlands), 261-277
[30] Waleffe, F., The nature of triad interactions in homogeneous turbulence, Phys. Fluids A, 4, 350 (1992) · Zbl 0745.76027
[31] Yeung, P.; Donzis, D.; Sreenivasan, K., High Reynolds-number simulation of turbulent mixing, Phys. Fluids, 17, 081703 (2005) · Zbl 1187.76581
[32] Yoshimatsu, K.; Okamoto, N.; Schneider, K.; Kaneda, Y.; Farge, M., Intermittency and scale-dependent statistics in fully developed turbulence, Phys. Rev. E, 79, 026303 (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.