×

Break detection in the covariance structure of multivariate time series models. (English) Zbl 1191.62143

Summary: We introduce an asymptotic test procedure to assess the stability of volatilities and cross-volatilites of linear and nonlinear multivariate time series models. The test is very flexible as it can be applied, for example, to many of the multivariate GARCH models established in the literature, and also works well in the case of high dimensionality of the underlying data. Since it is nonparametric, the procedure avoids the difficulties associated with parametric model selection, model fitting and parameter estimation. We provide the theoretical foundation for the test and demonstrate its applicability via a simulation study and an analysis of financial data. Extensions to multiple changes and the case of infinite fourth moments are also discussed.

MSC:

62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
60F17 Functional limit theorems; invariance principles
62P05 Applications of statistics to actuarial sciences and financial mathematics
62G10 Nonparametric hypothesis testing
91G70 Statistical methods; risk measures
65C60 Computational problems in statistics (MSC2010)
62G20 Asymptotic properties of nonparametric inference

Software:

FinTS
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Andreou, E. and Ghysels, E. (2002). Detecting multiple breaks in financial market volatility dynamics. J. Appl. Econometrics 17 579-600.
[2] Andreou, E. and Ghysels, E. (2003). Tests for breaks in the conditional co-movements of asset returns. Statist. Sinica 13 1045-1073. · Zbl 1034.62104
[3] Andrews, D. W. K. (1984). Nonstrong mixing autoregressive processes. J. Appl. Probab. 21 930-934. JSTOR: · Zbl 0552.60049
[4] Andrews, D. W. K. (1991). Heteroskedasticity and autocorrelation-consistent covariance matrix estimation. Econometrica 59 817-858. JSTOR: · Zbl 0732.62052
[5] Aue, A., Berkes, I. and Horváth, L. (2006). Strong approximation for the sums of squares of augmented GARCH sequences. Bernoulli 12 583-608. · Zbl 1125.62092
[6] Bai, J. and Perron, P. (1998). Estimating and testing linear models with multiple structural changes. Econometrica 66 47-78. JSTOR: · Zbl 1056.62523
[7] Bauwens, L., Laurent, S. and Rombouts, J. V. K. (2006). Multivariate GARCH models: A survey. J. Appl. Econometrics 21 79-109.
[8] Berkes, I., Hörmann, S. and Horváth, L. (2008). The functional central limit theorem for a family of GARCH observations with applications. Statist. Probab. Lett. 78 2725-2730. · Zbl 1151.60323
[9] Berkes, I., Horváth, L. and Kokoszka, P. (2003). GARCH processes: Structure and estimation. Bernoulli 9 201-227. · Zbl 1064.62094
[10] Billingsley, P. (1968). Convergence of Probability Measures . Wiley, New York. · Zbl 0172.21201
[11] Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. J. Econometrics 31 307-327. · Zbl 0865.62085
[12] Bollerslev, T. (1990). Modeling the coherence in short-run nominal exchange rates: A multivariate generalized ARCH model. Rev. Econom. Statist. 74 498-505.
[13] Bougerol, P. and Picard, N. (1992). Strict stationarity of generalized autoregressive processes. Ann. Probab. 20 1714-1730. · Zbl 0763.60015
[14] Bougerol, P. and Picard, N. (1992). Stationarity of GARCH processes and of some nonnegative time series. J. Econometrics 52 115-127. · Zbl 0746.62087
[15] Brandt, A. (1986). The stochastic equation Y n +1 = A n Y n + B n with stationary coefficients. Adv. in Appl. Probab. 18 211-220. JSTOR: · Zbl 0588.60056
[16] Brockwell, P. J. and Davis, R. A. (1991). Time Series: Theory and Methods , 2nd ed. Springer, New York. · Zbl 0709.62080
[17] Carrasco, M. and Chen, X. (2002). Mixing and moment properties of various GARCH and stochastic volatility models. Econometric Theory 18 17-39. JSTOR: · Zbl 1181.62125
[18] Csörgő, M. and Horváth, L. (1997). Limit Theorems in Change-Point Analysis . Wiley, Chichester. · Zbl 0884.62023
[19] Davidson, J. (1994). Stochastic Limit Theory . Oxford Univ. Press, Oxford. · Zbl 0904.60002
[20] Davis, R. A., Lee, T. C. M. and Rodriguez-Yam, G. (2008). Break detection for a class of nonlinear time series models. J. Time Ser. Anal. 29 834-867. · Zbl 1199.62006
[21] Davis, R. A. and Mikosch, T. (1998). The sample autocorrelations of heavy-tailed processes with applications to ARCH. Ann. Statist. 26 2049-2080. · Zbl 0929.62092
[22] Doukhan, P. and Louhichi, S. (1999). A new weak dependence condition and application to moment inequalities. Stochastic Process. Appl. 84 313-343. · Zbl 0996.60020
[23] Engle, R. F. (1982). Autoregressive conditional heteroskedasticity with estimates of the variance of U.K. inflation. Econometrica 50 987-1008. JSTOR: · Zbl 0491.62099
[24] Engle, R. F., Ng, V. K. and Rothschild, M. (1990). Asset pricing with a factor ARCH covariance structure: Empirical estimates for treasury bills. J. Econometrics 45 213-238.
[25] Erdélyi, A. (1954). Tables of Integral Transforms 1 . McGraw-Hill, New York. · Zbl 0055.36401
[26] Gombay, E., Horváth, L. and Hušková, M. (1996). Estimators and tests for change in the variance. Statistics and Decisions 14 145-159. · Zbl 0864.62030
[27] Hall, P. and Yao, Q. (2003). Inference in ARCH and GARCH models with heavy-tailed errors. Econometrica 71 285-317. JSTOR: · Zbl 1136.62368
[28] He, C. and Teräsvirta, T. (1999). Fourth moment structure of the Garch( p , q ) process. Econometric Theory 15 824-846. · Zbl 0961.62077
[29] Hörmann, S. (2008). Augmented GARCH sequences: Dependence structure and asymptotics. Bernoulli 14 543-561. · Zbl 1155.62066
[30] Horn, R. A. and Johnson, C. R. (1991). Topics in Matrix Analysis . Cambridge Univ. Press, Cambridge. · Zbl 0729.15001
[31] Hsu, D. A. (1979). Detecting shifts of parameter in gamma sequences with applications to stock price and air traffic flow analysis. J. Amer. Statist. Assoc. 74 31-40.
[32] Ibragimov, I. A. (1962). Some limit theorems for stationary processes. Theory Probab. Appl. 7 349-382. · Zbl 0119.14204
[33] Inclán, C. and Tiao, G. C. (1994). Use of cumulative sums of squares for retrospective detection of changes of variance. J. Amer. Statist. Assoc. 89 913-923. · Zbl 0825.62678
[34] Jeantheau, T. (1998). Strong consistency of estimators for multivariate ARCH models. Econometric Theory 14 70-86. JSTOR: · Zbl 04544644
[35] Kawakatsu, H. (2006). Matrix exponential GARCH. J. Econometrics 134 95-128. · Zbl 1418.62484
[36] Kiefer, J. (1959). K -sample analogues of the Kolmogorov-Smirnov and Cramér-v. Mises tests. Ann. Math. Statist. 30 420-447. · Zbl 0134.36707
[37] Kokoszka, P. and Leipus, R. (2000). Change-point estimation in ARCH models. Bernoulli 6 513-539. · Zbl 0997.62068
[38] Lanne, M. and Saikkonen, P. (2007). A multivariate generalized orthogonal factor GARCH model. J. Bus. Econom. Statist. 25 61-75.
[39] Li, W. K. (2004). Diagnostic Checks in Time Series . Chapman & Hall, Boca Raton, FL. · Zbl 1053.62100
[40] Mikosch, T. (2003). Modeling dependence and tails of financial time series. In: Extreme Values in Finance, Telecommunications, and the Environment (B. Finkenstaedt and H. Rootzen, eds.) 185-286. Chapman & Hall, Boca Raton, FL.
[41] Mikosch, T. and Straumann, D. (2006). Stable limits of martingale transforms with application to the estimation of GARCH parameters. Ann. Statist. 34 493-522. · Zbl 1091.62082
[42] Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach. Econometrica 59 347-370. JSTOR: · Zbl 0722.62069
[43] Nze, P. A. and Doukhan, P. (2004). Weak dependence: Models and applications to econometrics. Econometric Theory 20 995-1045. JSTOR: · Zbl 1069.62070
[44] Petrov, V. V. (1995). Limit Theorems of Probability Theory . Oxford Univ. Press, Oxford. · Zbl 0826.60001
[45] Pötscher, B. M. and Prucha, I. R. (1997). Dynamic Nonlinear Econometric Models, Asymptotic Theory . Springer, New York. · Zbl 0923.62121
[46] Serban, M., Brockwell, A., Lehoczky, J. and Srivastava, S. (2007). Modelling the dynamic dependence structure in multivariate financial time series. J. Time Ser. Anal. 28 763-782. · Zbl 1150.62064
[47] Silvennoinen, A. and Teräsvirta, T. (2008). Multivariate GARCH models. In: Handbook of Financial Time Series (T. G. Andersen, R. A. Davis, J.-P. Kreiss and T. Mikosch, eds.) 201-229. Springer, New York. · Zbl 1178.62103
[48] Tsay, R. S. (2005). Analysis of Financial Time Series , 2nd ed. Wiley, New York. · Zbl 1086.91054
[49] Vrontos, I. D., Dellaportas, P. and Politis, D. N. (2003). A full-factor multivariate GARCH model. Econom. J. 6 312-334. · Zbl 1065.91553
[50] Wu, W. B. (2005). Nonlinear system theory: Another look at dependence. Proc. Natl. Acad. Sci. USA 102 14150-14154. · Zbl 1135.62075
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.