Campbell, Sue Ann; Ruan, Shigui; Wei, Junjie Qualitative analysis of a neural network model with multiple time delays. (English) Zbl 1192.37115 Int. J. Bifurcation Chaos Appl. Sci. Eng. 9, No. 8, 1585-1595 (1999). Summary: We consider a simplified neural network model for a ring of four neurons where each neuron receives two time delayed inputs: One from itself and another from the previous neuron. Local stability analysis of the positive equilibrium leads to a characteristic equation containing products of four transcendental functions. By analyzing the equivalent system of four scalar transcendental equations, we obtain sufficient conditions for the linear stability of the positive equilibrium. Furthermore, we show that a Hopf bifurcation can occur when the positive equilibrium loses stability. Cited in 36 Documents MSC: 37N25 Dynamical systems in biology 92B20 Neural networks for/in biological studies, artificial life and related topics 34K20 Stability theory of functional-differential equations PDF BibTeX XML Cite \textit{S. A. Campbell} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 9, No. 8, 1585--1595 (1999; Zbl 1192.37115) Full Text: DOI OpenURL References: [1] Babcock K. L., Physica 28 pp 305– (1987) [2] DOI: 10.1109/72.298231 [3] DOI: 10.1007/BF01049141 · Zbl 0796.34063 [4] DOI: 10.1137/S0036139994274526 · Zbl 0840.92003 [5] Campbell S. A., Fields Inst. Commun. 21 pp 65– (1999) [6] Gopalsamy K., Physica 76 pp 344– (1994) [7] Gopalsamy K., Physica 89 pp 395– (1996) [8] DOI: 10.1006/jmaa.1993.1312 · Zbl 0787.34062 [9] DOI: 10.1073/pnas.81.10.3088 · Zbl 1371.92015 [10] DOI: 10.1007/BF02219053 · Zbl 0882.92002 [11] DOI: 10.1007/BF02878920 · Zbl 0886.68115 [12] DOI: 10.1016/S0307-904X(97)00080-2 · Zbl 0893.68126 [13] DOI: 10.1006/jdeq.1996.0036 · Zbl 0849.34055 [14] Marcus C. M., Physica 51 pp 234– (1991) [15] DOI: 10.1103/PhysRevA.39.347 [16] Olien L., Physica 102 pp 349– (1997) [17] Shayer L. P., SIAM J. Appl. Math., to appear. (1999) [18] DOI: 10.1137/S0036139997321219 · Zbl 0917.34036 [19] Wei J., Physica 130 pp 255– (1999) [20] Ye H., Phys. Rev. 50 pp 4206– (1994) [21] Ye H., Phys. Rev. 51 pp 2611– (1995) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.