×

Counting discriminants of number fields. (English) Zbl 1193.11109

Summary: For each transitive permutation group \(G\) on \(n\) letters with \(n\leq 4\), we give without proof results, conjectures, and numerical computations on discriminants of number fields \(L\) of degree \(n\) over \(\mathbb Q\) such that the Galois group of the Galois closure of \(L\) is isomorphic to \(G\).

MSC:

11R45 Density theorems
11R29 Class numbers, class groups, discriminants
11R32 Galois theory
11-02 Research exposition (monographs, survey articles) pertaining to number theory

References:

[1] A. Baily, On the density of discriminants of quartic fields. J. reine angew. Math. 315 (1980), 190-210. · Zbl 0421.12007
[2] K. Belabas, A fast algorithm to compute cubic fields. Math. Comp. 66 (1997), 1213-1237. · Zbl 0882.11070
[3] K. Belabas, On quadratic fields with large \(3\)-rank. Math. Comp. 73 (2004), 2061-2074. · Zbl 1051.11055
[4] K. Belabas, M. Bhargava, C. Pomerance, Error estimates for the Davenport-Heilbronn theorems. Preprint available at · Zbl 1227.11114
[5] M. Bhargava, Higher Composition Laws I, II, III, IV. · Zbl 1072.11078
[6] H. Cohen, A course in computational algebraic number theory (fourth printing). GTM 138, Springer-Verlag, 2000. · Zbl 0786.11071
[7] H. Cohen, Advanced topics in computational number theory. GTM 193, Springer-Verlag, 2000. · Zbl 0977.11056
[8] H. Cohen, Comptage exact de discriminants d’extensions abéliennes. J. Th. Nombres Bordeaux 12 (2000), 379-397. · Zbl 0976.11055
[9] H. Cohen, Enumerating quartic dihedral extensions of \(\mathbb{Q}\) with signatures. Ann. Institut Fourier 53 (2003) 339-377. · Zbl 1114.11085
[10] H. Cohen, High precision computation of Hardy-Littlewood constants. Preprint available on the author’s web page at the URL .
[11] H. Cohen, Counting \(A_4\) and \(S_4\) extensions of number fields with given resolvent cubic, in “High primes and misdemeanours: lectures in honour of the 60th birthday of Hugh Cowie Williams”. Fields Institute Comm. 41 (2004), 159-168. · Zbl 1197.11140
[12] H. Cohen, Constructing and counting number fields. Proceedings ICM 2002 Beijing vol II, Higher Education Press, China (2002), 129-138. · Zbl 1042.11067
[13] H. Cohen, F. Diaz y Diaz, M. Olivier, Enumerating quartic dihedral extensions of \(\mathbb{Q} \). Compositio Math. 133 (2002), 65-93. · Zbl 1050.11104
[14] H. Cohen, F. Diaz y Diaz, M. Olivier, Construction of tables of quartic fields using Kummer theory. Proceedings ANTS IV, Leiden (2000), Lecture Notes in Computer Science 1838, Springer-Verlag, 257-268. · Zbl 0987.11079
[15] H. Cohen, F. Diaz y Diaz, M. Olivier, Constructing complete tables of quartic fields using Kummer theory. Math. Comp. 72 (2003) 941-951. · Zbl 1081.11081
[16] H. Cohen, F. Diaz y Diaz, M. Olivier, Densité des discriminants des extensions cycliques de degré premier. C. R. Acad. Sci. Paris 330 (2000), 61-66. · Zbl 0941.11042
[17] H. Cohen, F. Diaz y Diaz, M. Olivier, On the density of discriminants of cyclic extensions of prime degree. J. reine angew. Math. 550 (2002), 169-209. · Zbl 1004.11063
[18] H. Cohen, F. Diaz y Diaz, M. Olivier, Cyclotomic extensions of number fields. Indag. Math. (N.S.) 14 (2003), 183-196. · Zbl 1056.11058
[19] H. Cohn, The density of abelian cubic fields. Proc. Amer. Math. Soc. 5 (1954), 476-477. · Zbl 0055.26901
[20] B. Datskovsky, D. J. Wright, Density of discriminants of cubic extensions. J. reine angew. Math. 386 (1988), 116-138. · Zbl 0632.12007
[21] H. Davenport, H. Heilbronn, On the density of discriminants of cubic fields I. Bull. London Math. Soc. 1 (1969), 345-348. · Zbl 0211.38602
[22] H. Davenport, H. Heilbronn, On the density of discriminants of cubic fields II. Proc. Royal. Soc. A 322 (1971), 405-420. · Zbl 0212.08101
[23] H. Hasse, Arithmetische Theorie der kubischen Zahlkörper auf klassenkörpertheoretischer Grundlage. Math. Zeitschrift 31 (1930), 565-582. · JFM 56.0167.02
[24] J. Klüners, A counter-example to Malle’s conjecture on the asymptotics of discriminants. C. R. Acad. Sci. Paris 340 (2005), 411-414. · Zbl 1083.11069
[25] S. Mäki, On the density of abelian number fields. Thesis, Helsinki, 1985. · Zbl 0566.12001
[26] S. Mäki, The conductor density of abelian number fields. J. London Math. Soc. (2) 47 (1993), 18-30. · Zbl 0727.11041
[27] G. Malle, On the distribution of Galois groups. J. Number Th. 92 (2002), 315-329. · Zbl 1022.11058
[28] G. Malle, On the distribution of Galois groups II, Exp. Math. 13 (2004), 129-135. · Zbl 1099.11065
[29] G. Malle, The totally real primitive number fields of discriminant at most \(10^9\). Proceedings ANTS VII (Berlin), 2006, Springer Lecture Notes in Computer Science XXX. · Zbl 1143.11371
[30] D. Roberts, Density of cubic field discriminants. Math. Comp. 70 (2001), 1699-1705. · Zbl 0985.11068
[31] G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres. Cours Spécialisés SMF 1, Société Mathématique de France, 1995. · Zbl 0880.11001
[32] D. J. Wright, Distribution of discriminants of Abelian extensions. Proc. London Math. Soc. (3) 58 (1989), 17-50. · Zbl 0628.12006
[33] D. J. Wright, personal communication.
[34] D. J. Wright, A. Yukie, Prehomogeneous vector spaces and field extensions. Invent. Math. 110 (1992), 283-314. · Zbl 0803.12004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.