Erbe, Lynn; Hassan, Taher S.; Peterson, Allan Oscillation criteria for nonlinear functional neutral dynamic equations on time scales. (English) Zbl 1193.34135 J. Difference Equ. Appl. 15, No. 11-12, 1097-1116 (2009). The following second-order nonlinear functional dynamic equation on a time scale \(\mathbb T\) \[ (r(t)[(x(t)\pm p(t)x(\eta(t)))^\Delta ]^\gamma )^\Delta +f(t,x(g(t))) = 0 \]is considered, where \(\gamma\) is the quotient of odd positive integers, \(r\) and \(p\) are positive rd-continuous functions on \(\mathbb T\), \(\eta\), \(g: \mathbb T\to \mathbb T\), \(\eta (t)\leq t\), and \(\lim_{t\to \infty} \eta(t)= \lim_{t\to \infty} g(t)=\infty\). Oscillation criteria are obtained. Several examples are also given. Reviewer: Satoshi Tanaka (Okayama) Cited in 34 Documents MSC: 34K11 Oscillation theory of functional-differential equations 34N05 Dynamic equations on time scales or measure chains Keywords:Oscillation; dynamic equations; neutral PDF BibTeX XML Cite \textit{L. Erbe} et al., J. Difference Equ. Appl. 15, No. 11--12, 1097--1116 (2009; Zbl 1193.34135) Full Text: DOI OpenURL References: [1] DOI: 10.1016/j.jmaa.2004.06.041 · Zbl 1062.34068 [2] Bohner M., Dynamic Equations on Time Scales: An Introduction with Applications (2001) · Zbl 0978.39001 [3] DOI: 10.1007/978-0-8176-8230-9 [4] DOI: 10.1016/j.amc.2008.04.038 · Zbl 1162.39005 [5] Erbe L., Nonlinear Dynam. Sys. Th. 9 pp 51– (2009) [6] Erbe L., Int. J. Diff. Equ. [7] DOI: 10.1112/S0024610703004228 · Zbl 1050.34042 [8] DOI: 10.1016/j.jmaa.2006.10.055 · Zbl 1125.34046 [9] Hardy G.H., Inequalities, 2. ed. (1988) [10] DOI: 10.1016/j.jmaa.2008.04.019 · Zbl 1156.34022 [11] Hilger S., Results Math. 18 pp 18– (1990) · Zbl 0722.39001 [12] DOI: 10.1007/978-1-4613-0071-7 [13] DOI: 10.1155/ADE/2006/65626 · Zbl 1139.39302 [14] DOI: 10.1016/j.camwa.2004.04.038 · Zbl 1075.34061 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.