Fowler, A. C.; Gibbon, J. D.; Mcguinness, M. J. The real and complex Lorenz equations and their relevance to physical systems. (English) Zbl 1194.76087 Physica D 7, No. 1-3, 126-134 (1983). Summary: We summarize some recently obtained results on real and complex Lorenz equations and discuss their possible significance in relation to real fluid dynamical processes. Cited in 31 Documents MSC: 76F99 Turbulence 37N10 Dynamical systems in fluid mechanics, oceanography and meteorology PDF BibTeX XML Cite \textit{A. C. Fowler} et al., Physica D 7, No. 1--3, 126--134 (1983; Zbl 1194.76087) Full Text: DOI Link References: [1] Arneodo, A.; Collet, P.; Tresser, C., J. Stat. Phys., 27, 171 (1982) [2] Benjamin, T. B.; Feir, J. E., J. Fluid Mech., 27, 417 (1967) [3] Benney, D. J.; Bergeron, R. F., Stud. Appl. Math., 48, 181 (1969) [4] Booty, M.; Gibbon, J. D.; Fowler, A. C., Phys. Lett., 87A, 261 (1982) [5] Brindley, J.; Moroz, I. M., Phys. Lett., 77A, 441 (1980) [6] Busse, F. H., (Swinney, H. L.; Collub, J. P., Hydrodynamic Instabilities and the Transition to Turbulence (1981), Springer: Springer Berlin), 97 [7] Collet, P.; Eckmann, J.-P., Iterated Maps on the Interval as Dynamical Systems (1980), Birkhäuser: Birkhäuser Boston · Zbl 0441.58011 [8] Da Costa, L. N.; Knobloch, E.; Weiss, N. O., J. Fluid Mech., 109, 25 (1981) [9] Davey, A.; Nguyen, H. P.F., J. Fluid Mech., 45, 701 (1971) [10] Di Prima, R. C.; Swinney, H. L., (Swinney, H. L.; Gollub, J. P., Hydrodynamic Instabilities and the Transition to Turbulence (1981), Springer: Springer Berlin), 139 [11] Drazin, P. G., Quart J. R. Met. Soc., 96, 667 (1970) [12] Drazin, P. G., J. Fluid Mech., 55, 577 (1972) · Zbl 0247.76043 [13] Eckmann, J.-P., Rev. Mod. Phys., 53, 643 (1981) [14] Feigenbaum, M. J., J. Stat. Phys., 19, 25 (1978) [15] Fenstermacher, P. R.; Swinney, H. L.; Gollub, J. P., J. Fluid Mech., 94, 103 (1979) [16] Fowler, A. C., IMA J. Appl. Math., 28, 41 (1982) [17] Fowler, A. C.; McGuinness, M. J., A description of the Lorenz attractor at high Prandtl number, Physica, 5D, 149 (1982) · Zbl 1194.37155 [18] Fowler, A. C.; McGuinness, M. J., Hysteresis, period doubling and intermittency at high Prandtl number in the Lorenz equations, Stud. Appl. Math. (1983), in press · Zbl 0534.76092 [19] Fowler, A. C.; McGuinness, M. J., A nonlinear torus at high \(r_1\) in the complex Lorenz equations, SIAM J. Appl. Math. (1983), Submitted to · Zbl 0534.76092 [20] Fowler, A. C.; Gibbon, J. D.; McGuinness, M. J., Physica, 4D, 139 (1982) [21] Francheschini, V.; Tebaldi, C., J. Stat. Phys., 21, 707 (1979) [22] Fraser, S.; Kapral, R., Phys. Rev., 23A, 3303 (1981) [23] Gibbon, J. D.; James, I. N.; Moroz, I. M., (Proc. R. Soc. Lond. A, 367 (1979)), 219 [24] Gibbon, J. D.; McGuinness, M. J., Phys. Lett., 77A, 295 (1980) [25] Gibbon, J. D.; McGuinness, M. J., (Proc. R. Soc. Lond. A, 377 (1981)), 185 [26] Gibbon, J. D.; McGuinness, M. J., The real and complex Lorenz equations in rotating fluids and lasers, Physica, 5D, 108 (1982) · Zbl 1194.76280 [28] Gollub, J. P.; Benson, S. V., J. Fluid Mech., 100, 449 (1980) [29] Gurney, W. S.C.; Blythe, S. P.; Nisbet, R. M., Nature, 287, 17 (1980) [30] Haken, H., Encyclopedia of Physics, (Light and Matter, vol. 25/2c (1970), Springer: Springer Berlin) · Zbl 0428.93052 [31] Haken, H., Phys. Lett., 53A, 77 (1973) [32] Hart, J. E., J. Atmos. Sci., 30, 1017 (1973) [33] Hide, R.; Mason, P. J., Adv. Phys., 24, 47 (1975) [34] Hopf, F. A.; Kaplan, D. L.; Gibbs, H. M.; Shoemaker, R. L., Phys. Rev., A25, 2172 (1982) [35] Howard, L. N., (Görtler, H., Int. Cong. Appl. Mech. Munich 1964 (1966), Springer: Springer Berlin), 1109 [36] Knobloch, E.; Proctor, M. R.E., J. Fluid Mech., 108, 291 (1981) [37] Landahl, M. T., SIAM J. Appl. Math., 28, 735 (1975) [38] Libchaber, A.; Maurer, J., J. Phys. Lett., 39, L369 (1978) [39] Libchaber, A.; Maurer, J., J. Phys., 41, 51 (1980) [40] Libchaber, A.; Laroche, C.; Fauve, S., J. Phys. Lett., 43, L211 (1982) [41] Lorenz, E. N., J. Atmos. Sci., 20, 130 (1963) [42] Mackey, M. C.; Glass, L., Science, 197, 287 (1977) [43] Manneville, P.; Pomeau, Y., Physica, 1D, 219 (1980) [44] Maslowe, S., (Swinney, H. L.; Gollub, J. P., Hydrodynamic Instabilities and the Transition to Turbulence (1981), Springer: Springer Berlin), 181 [45] Maurer, J.; Libchaber, A., J. Phys. Lett., 40, L419 (1979) [46] Maurer, J.; Libchaber, A., J. Phys. Lett., 41, L515 (1980) [47] May, R. M., Nature, 261, 459 (1976) [48] May, R. M., Ann. N.Y. Acad. Sci., 357, 267 (1980) [49] Moroz, I. M.; Brindley, J., (Proc. R. Soc. Lond. A, 377 (1981)), 379 [50] Orszag, S. A.; Patera, A. T., Phys. Rev. Lett., 45, 989 (1980) [51] Ott, E., Rev. Mod. Phys., 53, 655 (1981) [52] Patera, A. T.; Orszag, S. A., J. Fluid Mech., 112, 467 (1981) [53] Pedlosky, J., J. Atmos. Sci., 27, 15 (1970) [54] Pedlosky, J., J. Atmos. Sci., 28, 587 (1971) [55] Pedlosky, J., J. Atmos. Sci., 29, 680 (1972) [56] Pedlosky, J., J. Atmos. Sci., 38, 717 (1981) [57] Pedlosky, J.; Frenzen, C., J. Atmos. Sci., 37, 1177 (1980) [58] Reynolds, O., Phil. Trans. Roy. Soc., 174, 935 (1983) [59] Robbins, K. A., (Proc. Nat. Acad. Sci. USA, 73 (1976)), 4297 [60] Robbins, K. A., (Math. Proc. Camb. Phil. Soc., 82 (1977)), 309 [61] Robbins, K. A., SIAM J. Appl. Math., 36, 457 (1979) [62] Roberts, G. O., Geophys. Astrophys. Fluid Dyn., 12, 235 (1979) [63] Rosenblat, S.; Davis, S. H., SIAM J. Appl. Math., 37, 1 (1979) [64] Rössler, O. E.; Wegmann, K., Nature, 271, 89 (1978) [65] Ruelle, D.; Takens, F., Commun. Math. Phys., 20, 167 (1971) · Zbl 0227.76084 [66] Shimizu, T., Physica, 97A, 383 (1979) [67] Sparrow, C., The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors, (Lecture Notes in Applied Mathematics, Vol. 41 (1982), Springer: Springer Berlin) · Zbl 0504.58001 [68] Stewartson, K.; Stuart, J. T., J. Fluid Mech., 48, 529 (1971) [69] Tresser, C.; Coullet, P.; Arneodo, A., J. Phys. Lett., 41, L243 (1980) [70] Tritton, D. J.; Rayburn, D. M.; Forrest, M. A., (Davies, P. A.; Runcorn, S. K., Mechanisms of Continental Drift and Plate Tectonics (1980), Academic Press: Academic Press New York), 267 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.