×

The real and complex Lorenz equations in rotating fluids and lasers. (English) Zbl 1194.76280

Summary: The Lorenz equations are derived systematically from amplitude equations of weakly nonlinear dispersively unstable physical systems near criticality when weak dissipation is added. This derivation is only valid if the undamped neutral curve is not destabilised by the addition of weak dissipation. The addition of extra weak dispersive effects make some of the coefficients complex and yields a complex set of Lorenz equations. Both sets of equations are derived in examples in laser optics and baroclinic instability.

MSC:

76U05 General theory of rotating fluids
78A60 Lasers, masers, optical bistability, nonlinear optics
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Lorenz, E. N., J. Atmos. Sci., 20, 130 (1963)
[2] Saltzmann, B., J. Atmos. Sci., 19, 329 (1962)
[3] Gibbon, J. D.; McGuinness, M. J., (Proc. Royal Soc. A, 377 (1981)), 185
[4] Newell, A. C., (Newell, A. C., Nonlinear Wave Motion (1974), AMS: AMS Providence), and references therein · Zbl 0411.35008
[5] Stuart, J. T., J. Fluid Mech., 9, 353 (1960)
[6] Gibbon, J. D.; James, I. N.; Moroz, I. M., (Proc. Royal Soc. Lond., A367 (1978)), 219
[7] Pedlosky, J., J. Atmos. Sci., 29, 680 (1972)
[8] Moroz, I. M.; Brindley, J., (Proc. Royal Soc. Lond. A, 377 (1981)), 379
[9] Weissman, M. A., Phil. Trans. Royal Soc. Lond., 290, 639 (1979)
[10] Lange, C.; Newell, A. C., SIAM J. Appl. Math, 21, 605 (1971)
[11] Gibbon, J. D.; McGuinness, M. J., Phys. Lett., 77A, 295 (1980)
[12] Brindley, J.; Moroz, I. M., Phys. Lett., 77A, 441 (1980)
[14] Fowler, A. C.; Gibbon, J. D.; McGuinness, M. J., Physica, 4D, 139 (1982)
[15] Philips, N. A., Tellus, 6, 273 (1954)
[16] Pedlosky, J., J. Atmos. Sci., 27, 15 (1970)
[17] Pedlosky, J., J. Atmos. Sci., 28, 587 (1971)
[18] Romea, R., J. Atmos. Sci., 34, 1689 (1977)
[19] Pedlosky, J.; Frenzen, C., J. Atmos. Sci., 37, 1177 (1980)
[20] Haken, H., (Encyclopedia of Physics: Light and Matter, Vol. 25/2c (1970), Springer: Springer Heidlberg)
[21] Haken, H., Phys. Lett., 53A, 77 (1975)
[22] Haken, H., Z. Physik B, 29, 61 (1978)
[23] Haken, H.; Ohno, H., Optics Communication, 16, 205 (1976)
[24] Haken, H.; Ohno, H., Physics Letts., 59A, 261 (1976)
[25] Haken, H.; Ohno, H., Optics Comm., 26, 117 (1978)
[27] Holmes, P. J.; Marsden, J. E., (Proc. Int. Conf. Nonlinear Dynamics: Annals NY Acad. Sci. (1980))
[28] Howard, L. N.; Krishnamurti, R., Bull. of American Phys. Soc., 25, 1080 (1980)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.