×

Three-loop on-shell Feynman integrals with two masses. (English) Zbl 1194.81252

Summary: All three-loop on-shell QCD Feynman integrals with two masses can be reduced to 27 master integrals. Here we calculate these master integrals, expanded in \(\epsilon \), both exactly in the mass ratio and as series in limiting cases.

MSC:

81V05 Strong interaction, including quantum chromodynamics
81T18 Feynman diagrams

Software:

SHELL2; Fermat; Hypexp
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Broadhurst, D. J.; Gray, N.; Schilcher, K., Z. Phys. C, 52, 111 (1991)
[2] Broadhurst, D. J., Z. Phys. C, 54, 599 (1992)
[3] Fleischer, J.; Tarasov, O. V., Phys. Lett. B, 283, 129 (1992)
[4] Laporta, S.; Remiddi, E., Phys. Lett. B, 379, 283 (1996)
[5] Melnikov, K.; van Ritbergen, T., Nucl. Phys. B, 591, 515 (2000)
[6] Marquard, P.; Mihaila, L.; Piclum, J. H.; Steinhauser, M., Nucl. Phys. B, 773, 1 (2007)
[7] Davydychev, A. I.; Grozin, A. G., Phys. Rev. D, 59, 054023 (1999)
[8] Laporta, S.; Remiddi, E., Phys. Lett. B, 301, 440 (1993)
[9] Bekavac, S.; Grozin, A.; Seidel, D.; Steinhauser, M., JHEP, 0710, 006 (2007)
[10] Bekavac, S.; Seidel, D., in: Proceedings of 2007 International Linear Collider Workshop (LCWS07 and ILC07), Hamburg, Germany, 30 May-3 June 2007, p. LOOP11
[12] Laporta, S., Int. J. Mod. Phys. A, 15, 5087 (2000)
[13] Chetyrkin, K. G.; Tkachov, F. V., Nucl. Phys. B, 192, 159 (1981)
[14] Bauer, C. W.; Frink, A.; Kreckel, R.
[15] Lewis, R. H., Fermat’s User Guide
[16] Broadhurst, D. J.
[17] Huber, T.; Maître, D., Comput. Phys. Commun., 178, 755 (2008)
[18] Berends, F. A.; Davydychev, A. I.; Ussyukina, N. I., Phys. Lett. B, 426, 95 (1998)
[19] Argeri, M.; Mastrolia, P.; Remiddi, E., Nucl. Phys. B, 631, 388 (2002)
[20] Onishchenko, A.; Veretin, O., Phys. At. Nucl.. Phys. At. Nucl., Yad. Fiz., 68, 1461 (2005)
[21] Kotikov, A. V., Phys. Lett. B, 254, 158 (1991)
[22] Remiddi, E.; Vermaseren, J. A.M., Int. J. Mod. Phys. A, 15, 725 (2000)
[23] Maître, D.
[25] Boos, E. E.; Davydychev, A. I., Theor. Math. Phys.. Theor. Math. Phys., Teor. Mat. Fiz., 89, 56 (1991)
[26] Smirnov, V. A., Feynman Integral Calculus (2006), Springer · Zbl 0797.46058
[27] Bytev, V. V.; Kalmykov, M.; Kniehl, B. A.; Ward, B. F.L.; Yost, S. A.
[28] Mastrolia, P.; Remiddi, E., Nucl. Phys. B, 657, 397 (2003)
[29] Smirnov, V. A., Applied Asymptotic Expansions in Momenta and Masses, Springer Tracts in Modern Physics, vol. 177 (2002), Springer · Zbl 1025.81002
[30] Smirnov, V. A., Phys. Lett. B, 460, 397 (1999)
[31] Tausk, J. B., Phys. Lett. B, 469, 225 (1999)
[32] Czakon, M., Comput. Phys. Commun., 175, 559 (2006)
[33] Smirnov, A. V.; Smirnov, V. A.
[34] Smirnov, A. V.; Tentyukov, M. N., Comput. Phys. Commun., 180, 735 (2009)
[35] Binoth, T.; Heinrich, G., Nucl. Phys. B 693, 134 (2004)
[36] Bogner, C.; Weinzierl, S., Nucl. Phys. B (Proc. Suppl.), 183, 256 (2008)
[37] Weniger, E. J.
[38] Bekavac, S., Comput. Phys. Commun., 175, 180 (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.