×

Multiscroll chaotic attractors from a modified colpitts oscillator model. (English) Zbl 1196.34053

Summary: A simple approach for generating \((2N + 1)\)-scroll chaotic attractor from a modified Colpitts oscillator model is proposed in this paper. The key strategy is to increase the number of index-2 equilibrium points by introducing a triangle function to directly replace the nonlinearity term of Colpitts oscillator model. The dynamical characteristics of the new multiscroll chaotic system are studied comprehensively. A circuit realization structure is introduced and the experimental results demonstrate that \((2N + 1)\)-scroll chaotic attractors can be obtained in practical circuit.

MSC:

34C28 Complex behavior and chaotic systems of ordinary differential equations
34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1016/j.chaos.2004.11.073 · Zbl 1092.37509 · doi:10.1016/j.chaos.2004.11.073
[2] DOI: 10.1063/1.2401061 · Zbl 1146.37316 · doi:10.1063/1.2401061
[3] DOI: 10.1016/j.physleta.2007.04.112 · Zbl 1209.37032 · doi:10.1016/j.physleta.2007.04.112
[4] DOI: 10.1109/TCSII.2006.880032 · doi:10.1109/TCSII.2006.880032
[5] DOI: 10.1142/S0218127408020690 · doi:10.1142/S0218127408020690
[6] DOI: 10.1002/cta.487 · Zbl 05932433 · doi:10.1002/cta.487
[7] Lü J. H., IEEE Trans. Circuits Syst.-I 50 pp 198–
[8] DOI: 10.1109/TCSI.2004.838151 · Zbl 1371.37060 · doi:10.1109/TCSI.2004.838151
[9] DOI: 10.1016/j.automatica.2004.06.001 · Zbl 1162.93353 · doi:10.1016/j.automatica.2004.06.001
[10] DOI: 10.1142/S0218127406015179 · Zbl 1097.94038 · doi:10.1142/S0218127406015179
[11] Lü J. H., IEEE Trans. Circuits Syst.-I 53 pp 149–
[12] DOI: 10.1016/j.physleta.2008.01.065 · Zbl 1220.37024 · doi:10.1016/j.physleta.2008.01.065
[13] DOI: 10.1109/81.788813 · Zbl 0963.94053 · doi:10.1109/81.788813
[14] DOI: 10.1142/S0218127407017288 · Zbl 1117.37302 · doi:10.1142/S0218127407017288
[15] DOI: 10.1109/81.251829 · Zbl 0844.58063 · doi:10.1109/81.251829
[16] DOI: 10.1142/S0218127402004164 · Zbl 1044.37029 · doi:10.1142/S0218127402004164
[17] DOI: 10.1142/S0218127407020130 · doi:10.1142/S0218127407020130
[18] DOI: 10.1063/1.2768403 · Zbl 1163.37385 · doi:10.1063/1.2768403
[19] Yu S. M., IEEE Trans. Circuits Syst.-I 52 pp 1459–
[20] DOI: 10.1063/1.2336739 · Zbl 1151.94432 · doi:10.1063/1.2336739
[21] DOI: 10.1109/TCSI.2007.904651 · Zbl 1374.94933 · doi:10.1109/TCSI.2007.904651
[22] DOI: 10.1109/TCSII.2008.2002563 · doi:10.1109/TCSII.2008.2002563
[23] Yu S. M., Int. J. Circuit Th. Appl. 38 pp 243–
[24] DOI: 10.1142/S0218127409023913 · doi:10.1142/S0218127409023913
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.