Algorithms of common solutions to quasi variational inclusion and fixed point problems. (English) Zbl 1196.47047

Summary: The purpose of this paper is to present an iterative scheme for finding a common element of the set of solutions to the variational inclusion problem with multivalued maximal monotone mapping and inverse-strongly monotone mappings and the set of fixed points of nonexpansive mappings in Hilbert space. Under suitable conditions, some strong convergence theorems for approximating this common elements are proved. The results presented in the paper not only improve and extend the main results in [G.M.Korpelevich, Ekonom.i Mat.Metody 12, 747–756 (1976; Zbl 0342.90044)], but also extend and replenish the corresponding results obtained by H.Iiduka and W.Takahashi [Nonlinear Anal., Theory Methods Appl.61, No.3 (A), 341–350 (2005; Zbl 1093.47058)], W.Takahashi and M.Toyoda [J. Optim.Theory Appl.118, 417–428 (2003; Zbl 1055.47052)], N.Nadezhkina and W.Takahashi [J. Optim.Theory Appl.128, No.1, 191–201 (2006; Zbl 1130.90055)] and L.-C.Zeng and J.-C.Yao [Taiwanese J. Math.10, No.5, 1293–1303 (2006; Zbl 1110.49013)].


47J25 Iterative procedures involving nonlinear operators
47J22 Variational and other types of inclusions
47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc.
47H05 Monotone operators and generalizations
Full Text: DOI


[1] Noor M A, Noor K I. Sensitivity analysis of quasi variational inclusions[J]. J Math Anal Appl, 1999, 236(3):290–299. · Zbl 0949.49007 · doi:10.1006/jmaa.1999.6424
[2] Chang S S. Set-valued variational inclusions in Banach spaces[J]. J Math Anal Appl, 2000, 248:438–454. · Zbl 1031.49018 · doi:10.1006/jmaa.2000.6919
[3] Chang S S. Existence and approximation of solutions of set-valued variational inclusions in Banach spaces[J]. Nonlinear Anal TMA, 2001, 47(1):583–594. · Zbl 1042.49510 · doi:10.1016/S0362-546X(01)00203-6
[4] Demyanov V F. Stavroulakis G E, Polyakova L N, Panagiotopoulos P D. Quasidifferentiability and nonsmooth modeling in mechanics, engineering and economics[M]. Dordrecht: Kluwer Academic, 1996. · Zbl 1076.49500
[5] Noor M A. Generalized set-valued variational inclusions and resulvent equations[J]. J Math Anal Appl, 1998, 228(1):206–220. · Zbl 1031.49016 · doi:10.1006/jmaa.1998.6127
[6] Browder F E. Nonlinear monotone operators and convex sets in Banach spaces[J]. Bull Amer Math Soc, 1965, 71(5):780–785. · Zbl 0138.39902 · doi:10.1090/S0002-9904-1965-11391-X
[7] Hartman P, Stampacchia G. On some nonlinear elliptic differential equations[J]. Acta Math, 1966, 115(1):271–310. · Zbl 0142.38102 · doi:10.1007/BF02392210
[8] Lions J L, Stampacchia G. Variational inequalities[J]. Comm Pure Appl Math, 1967, 20:493–517. · Zbl 0152.34601 · doi:10.1002/cpa.3160200302
[9] Browder F E, Petryshyn W V. Construction of fixed points of nonlinear mappinga in Hilbert spaces[J]. J Math Anal Appl, 1967, 20:197–228. · Zbl 0153.45701 · doi:10.1016/0022-247X(67)90085-6
[10] Iiduka H, Takahashi W, Toyoda M. Approximation of solutions of variational inequalities for monotone mappings[J]. Pan-Amer Math J, 2004, 14:49–61. · Zbl 1060.49006
[11] Liu F, Nashed M Z. Regularization of nonlinear ill-posed variational inequalities and convergence rates[J]. Set-valued Analysis, 1998, 6(4):313–344. · Zbl 0924.49009 · doi:10.1023/A:1008643727926
[12] Takahashi W, Toyoda M. Weak convergence theorems for nonexpansive mappings and monotone mappings[J]. J Optim Theory Appl, 2003, 118(2):417–428. · Zbl 1055.47052 · doi:10.1023/A:1025407607560
[13] Iiduka H, TakahashiL W. Strong convergence theorems for nonexpansive mappings and inversestrongly monotone mappings[J]. Nonlinear Anal TMA, 2005, 61(3):341–350. · Zbl 1093.47058 · doi:10.1016/j.na.2003.07.023
[14] Nadezhkina N, Takahashi W. Weak convergence theorem by an extragradient method for nonexpansive mappings and monotone mappings[J]. J Optim Theory Appl, 2006, 128(1):191–201. · Zbl 1130.90055 · doi:10.1007/s10957-005-7564-z
[15] Korpelevich G M. An extragradient mthod for finding saddle points and for other problems[J]. Ekonomika i Matematicheskie Metody, 1976, 12(4):747–756. · Zbl 0342.90044
[16] Zeng L C, Yao J C. Strong convergence theorem by an extragradient method for fixed point problems and variational inequality problems[J]. Taiwanese Journal of Mathematics, 2006, 10(5):1293–1303. · Zbl 1110.49013
[17] Brezis H. Op’érateur maximaux monotones et semiproupes de contractions dans les espaces de Hilbert[M]. Amsterdam: North-Holland, 1973.
[18] Pascali Dan. Nonlinear mappings of monotone type[M]. Amsterdam, the Netherlands: Sijthoff and Noordhoff International Publishers, 1978.
[19] Liu L S. Ishikawa and Manniterative processes with errors for nonlinear strongly accretive mappings in Banach spaces[J]. J Math Anal Appl, 1995, 194(1):114–125. · Zbl 0872.47031 · doi:10.1006/jmaa.1995.1289
[20] Goebel K, Kirk W A. Topics in metric fixed point theory[M]. In: Cambridge Studies in Advanced Mathematics, London: Cambridge University Press, 1990. · Zbl 0708.47031
[21] Bruck R E. On the weak convergence of an ergodic iteration for the solution of variational inequalities for monotone operators in Hilbert spaces[J]. J Math Anal Appl, 1977, 61:159–164. · Zbl 0423.47023 · doi:10.1016/0022-247X(77)90152-4
[22] Chang S S. Some problems and results in the study of nonlinear analysis[J]. Nonlinear Anal TMA, 1997, 30(7):4197–4208. · Zbl 0901.47036 · doi:10.1016/S0362-546X(97)00388-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.