Ma, Ruyun; Ma, Huili Positive solutions for nonlinear discrete periodic boundary value problems. (English) Zbl 1197.39006 Comput. Math. Appl. 59, No. 1, 136-141 (2010). The article deals with the following boundary value problem \[ -\Delta[p(t - 1)\Delta u(t - 1)] + q(t)u(t) = rg(t)f(u(t)), \quad t \in [1,T]_{\mathbb Z}, \]\[ u(0) = u(T), \quad p(0)\Delta u(0) = p(T)\Delta u(T), \] where \(r\) is a positive parameter, \(T > 2\), \(f \in C({\mathbb R},{\mathbb R})\), \(sf(s) > 0\) for \(s \neq 0\) and there exist the limits \[ f_0 = \lim_{|s| \to 0} \;\frac{f(s)}{s}, \qquad f_\infty = \lim_{|s| \to \infty} \;\frac{f(s)}{s}, \]\(p, g: \;{\mathbb Z} \to (0,\infty)\) and \(q: \;{\mathbb Z} \to [0,\infty)\), \(q \not\equiv 0\), are \(T\)-periodic. The main result is the following:The boundary value problem under consideration has two \(T\)-periodic solutions \(u^+\) and \(u^-\), \(u^+(t) > 0\) and \(u^-(t) < 0\) for \(t \in (0,T)\), provided that either \(\lambda_1 / f_\infty < r < \lambda_1 / f_0\) or \(\lambda_1 / f_0 < r < \lambda_1 / f_\infty\), where \(\lambda_1\) is the first eigenvalue of the linear eigenvalue problem \[ -\Delta[p(t - 1)\Delta u(t - 1)] + q(t)u(t) = rg(t)u(t), \quad t \in [1,T]_{\mathbb Z}, \]\[ u(0) = u(T), \quad p(0)\Delta u(0) = p(T)\Delta u(T). \] Reviewer: Peter Zabreiko (Minsk) Cited in 15 Documents MSC: 39A23 Periodic solutions of difference equations 39A12 Discrete version of topics in analysis 34B15 Nonlinear boundary value problems for ordinary differential equations 34C25 Periodic solutions to ordinary differential equations 39A22 Growth, boundedness, comparison of solutions to difference equations 34L05 General spectral theory of ordinary differential operators Keywords:difference equations; periodic boundary value problem; positive solutions; Green function; periodic solutions; eigenvalue PDF BibTeX XML Cite \textit{R. Ma} and \textit{H. Ma}, Comput. Math. Appl. 59, No. 1, 136--141 (2010; Zbl 1197.39006) Full Text: DOI OpenURL References: [1] M.A. Krasnosel’skii˘, Positive solutions of operator equations. Translated from the Russian by Richard E. Flaherty, Groningen 1964 [2] Gustafson, G.B.; Schmitt, K., Nonzero solutions of boundary value problems for second order ordinary and delay-differential equations, J. differential equations, 12, 129-147, (1972) · Zbl 0227.34017 [3] Nussbaum, R.D., Periodic solutions of some nonlinear, autonomous functional differential equations. II, J. differential equations, 14, 360-394, (1973) · Zbl 0311.34087 [4] Atici, F.M.; Guseinov, G.Sh., On the existence of positive solutions for nonlinear differential equations with periodic boundary conditions, J. comput. appl. math., 132, 2, 341-356, (2001) · Zbl 0993.34022 [5] Jiang, D.; Chu, J.; O’Regan, D.; Agarwal, R., Multiple positive solutions to superlinear periodic boundary value problems with repulsive singular forces, J. math. anal. appl., 286, 2, 563-576, (2003) · Zbl 1042.34047 [6] O’Regan, D.; Wang, H., Positive periodic solutions of systems of second order ordinary differential equations, Positivity, 10, 285-298, (2006) · Zbl 1103.34027 [7] Torres, P., Existence of one-signed periodic solutions of some second-order differential equations via a Krasnoselskii fixed point theorem, J. differential equations, 190, 2, 643-662, (2003) · Zbl 1032.34040 [8] Zhang, Z.; Wang, J., Positive solutions to a second order three-point boundary value problem, J. math. anal. appl., 285, 1, 237-249, (2003) · Zbl 1035.34011 [9] Graef, J.R., Lingju Kong, haiyan Wang, existence, multiplicity, and dependence on a parameter for a periodic boundary value problem, J. differential equations, 245, 5, 1185-1197, (2008) · Zbl 1203.34028 [10] Atici, F.M.; Guseinov, G.Sh., Positive periodic solutions for nonlinear difference equations with periodic coefficients, J. math. anal. appl., 232, 166-182, (1999) · Zbl 0923.39010 [11] Fonda, A.; Habets, P., Periodic solutions of asymptotically positively homogeneous differential equations, J. differential equations, 81, 1, 68-97, (1989) · Zbl 0692.34041 [12] Rachunková, I.; Tvrdý, M.; Vrkoč, I., Existence of nonnegative and nonpositive solutions for second order periodic boundary value problems, J. differential equations, 176, 2, 445-469, (2001) · Zbl 1004.34008 [13] Wang, Haiyan, Positive periodic solutions of functional differential equations, J. differential equations, 202, 2, 354-366, (2004) · Zbl 1064.34052 [14] Chu, J.; Torres, P.J.; Zhang, M., Periodic solutions of second order non-autonomous singular dynamical systems, J. differential equations, 239, 1, 196-212, (2007) · Zbl 1127.34023 [15] Yu, J.; Guo, Z., Multiplicity results for periodic solutions to delay differential equations via critical point theory, J. differential equations, 218, 1, 15-35, (2005) · Zbl 1095.34043 [16] Ding, Tongren; Zanolin, F., Time-maps for the solvability of periodically perturbed nonlinear Duffing equations, Nonlinear anal. TMA, 17, 7, 635-653, (1991) · Zbl 0777.34030 [17] Ma, Ruyun, Nonlinear discrete sturm – liouville problems at resonance, Nonlinear anal., 67, 11, 3050-3057, (2007) · Zbl 1129.39006 [18] Ma, Ruyun; Ma, Huili, Unbounded perturbations of nonlinear discrete periodic problem at resonance, Nonlinear anal. TMA, 70, 7, 2602-2613, (2009) · Zbl 1166.39008 [19] Ward, J.R., Global bifurcation of periodic solutions to ordinary differential equations, J. differential equations, 142, 1, 1-16, (1998) · Zbl 0903.34033 [20] Ma, R., Bifurcation from infinity and multiple solutions for periodic boundary value problems, Nonlinear anal., 42, 1, 27-39, (2000) · Zbl 0966.34015 [21] Zeidler, E., Nonlinear functional analysis and its applications, (1986), Springer-Verlag New York [22] Rabinowitz, P.H., Some global results for nonlinear eigenvalue problems, J. funct. anal., 7, 487-513, (1971) · Zbl 0212.16504 [23] Wang, Yi; Shi, Yuming, Eigenvalues of second-order difference equations with periodic and antiperiodic boundary conditions, J. math. anal. appl., 309, 1, 56-69, (2005) · Zbl 1083.39019 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.