Du, Hongyue; Zeng, Qingshuang; Wang, Changhong Modified function projective synchronization of chaotic system. (English) Zbl 1198.93011 Chaos Solitons Fractals 42, No. 4, 2399-2404 (2009). Summary: This paper presents a new type synchronization called modified function projective synchronization, where the drive and response systems could be synchronized up to a desired scale function matrix. It is obvious that the unpredictability of the scaling functions can additionally enhance the security of communication. By active control scheme, we take Lorenz system as an example to illustrate above synchronization phenomenon. Furthermore, based on modified function projective synchronization, a scheme for secure communication is investigated in theory. The corresponding numerical simulations are performed to verify and illustrate the analytical results.Editorial remark: There are doubts about a proper peer-reviewing procedure of this journal. The editor-in-chief has retired, but, according to a statement of the publisher, articles accepted under his guidance are published without additional control. Cited in 33 Documents MSC: 93-04 Software, source code, etc. for problems pertaining to systems and control theory 93D15 Stabilization of systems by feedback 37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior 34H10 Chaos control for problems involving ordinary differential equations PDF BibTeX XML Cite \textit{H. Du} et al., Chaos Solitons Fractals 42, No. 4, 2399--2404 (2009; Zbl 1198.93011) Full Text: DOI References: [1] Pecora, L. M.; Carroll, T. L., Synchronization in chaotic systems, Phys Rev Lett, 64, 821-824 (1990) · Zbl 0938.37019 [2] Rosenblum, M. G.; Pikovsky, A. S.; Kurths, J., Phase synchronization of chaotic oscillators, Phys Rev Lett, 76, 1804-1807 (1996) [3] Rulkov, N. F.; Sushchik, M. M.; Tsimring, L. S., Generalized synchronization of chaos in directionally coupled chaotic systems, Phys Rev E, 51, 980-994 (1995) [4] Rosenblum, M. G.; Pikovsky, A. S.; Kurths, J., From phase to lag synchronization in coupled chaotic oscillators, Phys Rev Lett, 78, 4193-4196 (1997) [5] Hramov, A. E.; Koronovskii, A. A., An approach to chaotic synchronization, Chaos, 14, 603-610 (2004) · Zbl 1080.37029 [6] Li, Z.; Xu, D., A secure communication scheme using projective chaos synchronization, Chaos Solitons & Fractals, 22, 477-481 (2004) · Zbl 1060.93530 [7] Chee, C. Y.; Xu, D., Secure digital communication using controlled projective synchronization of chaos, Chaos Solitons & Fractals, 23, 1063-1070 (2005) · Zbl 1068.94010 [8] Hu, M.; Xu, Z., Adaptive feedback controller for projective synchronization, Nonlinear Anal Real World Appl, 9, 1253-1260 (2008) · Zbl 1144.93364 [9] Mainieri, R.; Rehacek, J., Projective synchronization in three-dimensional chaotic systems, Phys Rev Lett, 82, 3042-3045 (1999) [10] Xu, D., Control of projective synchronization in chaotic systems, Phys Rev E, 63, 27201 (2001) [11] Xu, D.; Li, Z.; Bishop, S. R., Manipulating the scaling factor of projective synchronization in three-dimensional chaotic systems, Chaos, 11, 439-442 (2001) · Zbl 0996.37075 [12] Xu, D.; Chee, C. Y., Controlling the ultimate state of projective synchronization in chaotic systems of arbitrary dimension, Phys Rev E, 66, 046218 (2002) [13] Li, Z.; Xu, D., Stability criterion for projective synchronization in three-dimensional chaotic systems, Phys Lett A, 282, 175-179 (2001) · Zbl 0983.37036 [14] Xu, D.; Ong, W. L.; Li, Z., Criteria for the occurrence of projective synchronization in chaotic systems of arbitrary dimension, Phys Lett A, 305, 167-172 (2002) · Zbl 1001.37026 [15] Wen, G.; Xu, D., Nonlinear observer control for full-state projective synchronization in chaotic continuous-time systems, Chaos Solitons & Fractals, 26, 71-77 (2005) · Zbl 1122.93311 [16] Yan, J.; Li, C., Generalized projective synchronization of a unified chaotic system, Chaos Solitons & Fractals, 26, 1119-1124 (2005) · Zbl 1073.65147 [17] Li, G. H., Generalized projective synchronization between Lorenz system and Chen’s system, Chaos Solitons & Fractals, 32, 1454-1458 (2007) · Zbl 1129.37013 [18] Park, J. H., Adaptive controller design for modified projective synchronization of Genesio-Tesi chaotic system with uncertain parameters, Chaos Solitons & Fractals, 34, 1154-1159 (2007) · Zbl 1142.93428 [19] Park, J. H., Adaptive control for modified projective synchronization of a four-dimensional chaotic system with uncertain parameters, J Comput Appl Math, 213, 288-293 (2008) · Zbl 1137.93035 [20] Li, G. H., Modified projective synchronization of chaotic system, Chaos Solitons & Fractals, 32, 1786-1790 (2007) · Zbl 1134.37331 [21] Tang, X.; Lu, J.; Zhang, W., The FPS of chaotic system using backstepping design, China J Dyn Control, 5, 216-219 (2007) [22] Du, H.; Zeng, Q.; Wang, C., Function projective synchronization of different chaotic systems with uncertain parameters, Phys Lett A, 372, 5402-5410 (2008) · Zbl 1223.34077 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.