×

Two-loop renormalization in the Standard Model. II: Renormalization procedures and computational techniques. (English) Zbl 1200.81111

Summary: In part I (Zbl 1200.81110) general aspects of the renormalization of a spontaneously broken gauge theory have been introduced. Here, in part II, two-loop renormalization is introduced and discussed within the context of the minimal Standard Model. Therefore, this paper deals with the transition between bare parameters and fields to renormalized ones. The full list of one- and two-loop counterterms is shown and it is proven that, by a suitable extension of the formalism already introduced at the one-loop level, two-point functions suffice in renormalizing the model. The problem of overlapping ultraviolet divergencies is analyzed and it is shown that all counterterms are local and of polynomial nature. The original program of ’t Hooft and Veltman is at work. Finite parts are written in a way that allows for a fast and reliable numerical integration with all collinear logarithms extracted analytically. Finite renormalization, the transition between renormalized parameters and physical (pseudo-)observables, will be discussed in part III (Zbl 1200.81112) where numerical results, e.g. for the complex poles of the unstable gauge bosons, will be shown. An attempt will be made to define the running of the electromagnetic coupling constant at the two-loop level.

MSC:

81T15 Perturbative methods of renormalization applied to problems in quantum field theory
81T18 Feynman diagrams
81V22 Unified quantum theories
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] ’t Hooft, G.; Veltman, M. J.G., Nucl. Phys. B, 50, 318 (1972)
[3] Denner, A.; Weiglein, G.; Dittmaier, S., Nucl. Phys. B, 440, 95 (1995)
[4] Jegerlehner, F.; Fleischer, J., Acta Phys. Pol. B, 17, 709 (1986)
[5] Takahashi, Y., Nuovo Cimento, 6, 371 (1957)
[6] Degrassi, G.; Vicini, A., Phys. Rev. D, 69, 073007 (2004)
[7] Vermaseren, J. A.M.
[10] Passarino, G., Nucl. Phys. B, 619, 257 (2001)
[11] Passarino, G.; Uccirati, S., Nucl. Phys. B, 629, 97 (2002)
[12] Ferroglia, A.; Passera, M.; Passarino, G.; Uccirati, S., Nucl. Phys. B, 680, 199 (2004)
[13] Passarino, G.; Uccirati, S., Nucl. Phys. B, 747, 113 (2006)
[14] Actis, S.; Ferroglia, A.; Passarino, G.; Passera, M.; Uccirati, S., Nucl. Phys. B, 703, 3 (2004)
[15] Ferroglia, A.; Passera, M.; Passarino, G.; Uccirati, S., Nucl. Phys. B, 650, 162 (2003)
[16] Dittmaier, S., Nucl. Phys. B, 675, 447 (2003)
[17] Actis, S.; Passarino, G.; Uccirati, S., Nucl. Phys. B (Proc. Suppl.), 160, 145 (2006)
[18] Passarino, G.; Veltman, M. J.G., Nucl. Phys. B, 160, 151 (1979)
[19] Weiglein, G.; Scharf, R.; Bohm, M., Nucl. Phys. B, 416, 606 (1994)
[20] ’t Hooft, G.; Veltman, M., Nucl. Phys. B, 44, 189 (1972)
[21] Fleischer, J.; Jegerlehner, F., Phys. Rev. D, 23, 2001 (1981)
[22] Passarino, G.; Pittau, R., Phys. Lett. B, 228, 89 (1989)
[23] Jegerlehner, F.
[24] Caffo, M.; Czyz, H.; Laporta, S.; Remiddi, E., Nuovo Cimento A, 111, 365 (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.