×

Arzelà’s theorem and strong uniform convergence on bornologies. (English) Zbl 1202.54004

The main result of this nice paper (Theorem 2.9) gives a direct proof that three kinds of convergence (Arzelà’s convergence on compacta, Alexandroff’s convergence and strong uniform convergence on finite sets, introduced recently by G. Beer and S. Levi [J. Math. Anal. Appl. 350, 568–589 (2009; Zbl 1161.54003)]) of nets of continuous functions between two metric spaces coincide, and that each of these conditions is equivalent to continuity of the limit function. Several properties ((sub)metrizability, the \(G_\delta\)-diagonal property, countable pseudocharacter, separability, second countability, the Fréchet-Urysohn property) of the topology of strong uniform convergence on a bornology are also established.

MSC:

54A20 Convergence in general topology (sequences, filters, limits, convergence spaces, nets, etc.)
54C05 Continuous maps
54C35 Function spaces in general topology

Citations:

Zbl 1161.54003
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Alexandroff, P. S., Einführung in die Mengenlehre und die Theorie der reellen Funktionem (1956), Deutsch Verlag Wissenschaft, translated from the 1948 Russian edition · Zbl 0070.04704
[2] Arzelà, C., Intorno alla continuitá della somma di infinitá di funzioni continue, Rend. R. Accad. Sci. Istit. Bologna, 79-84 (1883/1884)
[3] Arzelà, C., Sulle serie di funzioni, Mem. R. Accad. Sci. Ist. Bologna, 5, 8, 131-186 (1899/1900), 701-744 · JFM 31.0394.01
[4] Attouch, H.; Lucchetti, R.; Wets, R., The topology of the \(ρ\)-Hausdorff distance, Ann. Mat. Pura Appl., 160, 303-320 (1991) · Zbl 0769.54009
[5] Bartle, R. G., On compactness in functional analysis, Trans. Amer. Math. Soc., 79, 35-57 (1955) · Zbl 0064.35503
[6] Beer, G., On metric boundedness structures, Set-Valued Anal., 7, 195-208 (1999) · Zbl 0951.54025
[7] Beer, G., On convergence to infinity, Monatsh. Math., 129, 267-280 (2000) · Zbl 0995.54018
[8] Beer, G., Product metrics and boundedness, Appl. Gen. Topol., 9, 133-142 (2008)
[9] Beer, G.; Di Concilio, A., Uniform continuity on bounded sets and the Attouch-Wets topology, Proc. Amer. Math. Soc., 112, 235-243 (1991) · Zbl 0677.54007
[10] Beer, G.; Levi, S., Strong uniform continuity, J. Math. Anal. Appl., 350, 568-589 (2009) · Zbl 1161.54003
[11] Beer, G.; Levi, S., Total boundedness and bornologies, Topology Appl., 156, 1271-1285 (2009) · Zbl 1167.54008
[12] Borel, E., Lecons sur les Functions de Variables réelles et les Développements en Séries de Polynômes (1905), Gauthier-Villars: Gauthier-Villars Paris · JFM 36.0435.01
[13] Bouleau, N., Une structure uniforme sur un espace \(F(E, F)\), Cah. Topol. Géom. Differ., XI, 2, 207-214 (1969) · Zbl 0189.23402
[14] Bouleau, N., On the coarsest topology preserving continuity (2006)
[15] Bukovská, Z.; Bukovský, L.; Ewert, J., Quasi-uniform convergence and L-spaces, Real Anal. Exchange, 18, 321-329 (1992/1993) · Zbl 0873.54018
[16] Di Concilio, A.; Naimpally, S., Proximal convergence, Monatsh. Math., 103, 93-102 (1987) · Zbl 0607.54013
[17] Engelking, R., General Topology (1989), Heldermann Verlag: Heldermann Verlag Berlin · Zbl 0684.54001
[18] Ewert, J.; Jedrzjewski, J., Between Arzelà and Whitney convergence, Real Anal. Exchange, 29, 1, 257-264 (2003/2004) · Zbl 1071.54001
[19] Ewert, J., On strong form of Arzelà convergence, Int. J. Math. Math. Sci., 20, 417-422 (1997) · Zbl 0872.54004
[20] Gruenhage, G., Generalized metric spaces, (Kunen, K.; Vaughan, J., Handbook of Set-Theoretic Topology (1984), North-Holland: North-Holland Amsterdam), 423-501
[21] Hobson, E. W., On mode of convergence on an infinite series of functions of a real variable, Proc. London Math. Soc., 2, 373-387 (1904) · JFM 35.0396.01
[22] Hobson, E. W., The Theory of Functions of a Real Variable and the Theory of Fourier Series, vols. 1 and 2 (1926), Cambridge University Press · JFM 52.0237.02
[23] Hogbe-Nlend, H., Bornologies and Functional Analysis (1977), North-Holland: North-Holland Amsterdam · Zbl 0359.46004
[24] Holá, L.; Šalát, T., Graph convergence, uniform, quasi-uniform and continuous convergence and some characterizations of compactness, Acta Math. Univ. Comenian., 54-55, 121-132 (1988) · Zbl 0734.54019
[25] Hu, S. T., Boundedness in a topological space, J. Math. Pures Appl., 228, 287-320 (1949) · Zbl 0041.31602
[26] Lechicki, A.; Levi, S.; Spakowski, A., Bornological convergence, J. Math. Anal. Appl., 297, 751-770 (2007) · Zbl 1062.54012
[27] McCoy, R. A.; Ntantu, I., Topological Properties of Spaces of Continuous Functions, Lecture Notes in Math., vol. 1315 (1988), Springer-Verlag · Zbl 0621.54011
[28] Naimpally, S., Proximity Approach to Problems in Topology and Analysis (2009), Oldenbourg Verlag: Oldenbourg Verlag München · Zbl 1185.54001
[29] Poppe, H., Compactness in function spaces with a generalized uniform structure II, Bull. Acc. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 18, 567-573 (1970) · Zbl 0212.55001
[30] Predoi, M., Sur la convergence quasi-uniforme, Period. Math. Hungar., 10, 31-40 (1979) · Zbl 0368.54001
[31] Predoi, M., Sur la convergence quasi-uniforme topologique, An. Univ. Craiova, 11, 15-20 (1983) · Zbl 0647.54013
[32] Townsend, E. J., Arzelà’s condition for the continuity of a function defined by a series of continuous functions, Bull. Amer. Math. Soc., 12, 1, 7-21 (1905) · JFM 36.0475.01
[33] Vidossich, G., Topological characterization of pseudo-\(ℵ\)-compact spaces, Proc. Amer. Math. Soc., 27, 195-198 (1971) · Zbl 0204.55702
[34] Willard, S., General Topology (1970), Addison-Wesley Publishing Company: Addison-Wesley Publishing Company Reading, MA · Zbl 0205.26601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.