Luke, Nicholas S.; Devito, Michael J.; Shah, Imran; El-Masri, Hisham A. Development of a quantitative model of pregnane X receptor (PXR) mediated xenobiotic metabolizing enzyme induction. (English) Zbl 1202.92029 Bull. Math. Biol. 72, No. 7, 1799-1819 (2010). Summary: The pregnane X receptor plays an integral role in the regulation of hepatic metabolism. It has been shown to regulate CYP3A4, which is the most abundant cytochrome P450 in the human liver. With its large and flexible ligand-binding domain, PXR can be activated by an enormous range of relatively small, hydrophobic, exogenous compounds. Upon activation, PXR partners with the retinoid X receptor (RXR) to form a heterodimer. The newly formed heterodimer binds to an appropriate DNA response element, causing increased transcription. This leads to an induction in the level of CYP3A4. These mechanistic steps are included into a biologically-based mathematical model. The quantitative model predicts fold level inductions of CYP3A4 mRNA and protein in response to PXR activation. Model parameter values have been taken from the literature when appropriate. Unknown parameter values are estimated by optimizing the model results to published in vivo and in vitro data sets. A sensitivity analysis is performed to evaluate the model structure and identify future data needs which would be critical to revising the model. Cited in 1 ReviewCited in 2 Documents MSC: 92C40 Biochemistry, molecular biology 92C30 Physiology (general) 37N25 Dynamical systems in biology 65C20 Probabilistic models, generic numerical methods in probability and statistics Keywords:nuclear receptors; gene induction PDF BibTeX XML Cite \textit{N. S. Luke} et al., Bull. Math. Biol. 72, No. 7, 1799--1819 (2010; Zbl 1202.92029) Full Text: DOI References: [1] Aderem, A., 2005. Systems biology: Its practice and challenges. Cell 121, 511–513. doi: 10.1016/j.cell.2005.04.020 . [2] Allen, N.A., Calzone, L., Chen, K.C., Ciliberto, A., Ramakrishnan, N., Shaffer, C.A., Sible, J.C., Tyson, J.J., Vass, M.T., Watson, L.T., Zwolak, J.W., 2003. Modeling regulatory networks at Virginia Tech. OMICS 7, 285–299. [3] Andersen, M.E., Krewski, D., 2009. Toxicity testing in the 21st century: Bringing the vision to life. Toxicol. Sci. 107, 324–330. [4] Brown, R.P., Delp, M.D., Lindstedt, S.L., Rhomberg, L.R., Beliles, R.P., 1997. Physiological parameter values for physiologically based pharmacokinetic models. Toxicol. Ind. Health 13(4), 407–484. [5] Carnahan, V.E., Redinbo, M.R., 2005. Structure and function of the human nuclear xenobiotic receptor PXR. Curr. Drug Metab. 6, 357–367. [6] Dai, G., He, L., Bu, P., Wan, Y.-J.Y., 2008. Pregnane X receptor is essential for normal progression of liver regeneration. Hepatology 47, 1277–1287. [7] David, J.A., 2007. Optimal Control, Estimation, and Shape Design: Analysis and Applications. PhD thesis, North Carolina State University, Raleigh, NC. http://www.lib.ncsu.edu/theses/available/etd-07262007-194726/unrestricted/etd.pdf . [8] Dotzlaw, H., Leygue, E., Watson, P., Murphy, L.C., 1999. The human orphan receptor PXR messenger RNA is expressed in both normal and neoplastic breast tissue. Clin. Cancer Res. 5, 2103–2107. [9] Galetin, A., Burt, H., Gibbons, L., Houston, J.B., 2006. Prediction of time-dependent CYP3A4 drug-drug interactions: Impact of enzyme degradation, parallel elimination pathways, and intestinal inhibition. Drug Metab. Disp. 34(1), 166–175. doi: 10.1124/dmd.105.006874 . [10] Goodwin, B., Hodgson, E., Liddle, C., 1999. The orphan human pregnane X receptor mediates the transcriptional activation of CYP3A4 by rifampicin through a distal enhancer module. Mol. Pharmacol. 56, 1329–1339. [11] Handschin, C., Meyer, U.A., 2003. Induction of drug metabolism: The role of nuclear receptors. Pharmacol. Rev. 55(4), 649–673. doi: 10.1124/pr.55.4.2 . [12] Hargrove, J.L., 1993. Microcomputer-assisted kinetic modeling of mammailian gene expression. FASEB J. 7, 1163–1170. [13] Jackson, D.A., Pombo, A., Iborra, F., 2000. The balance sheet for transcription: an analysis of nuclear RNA metabolism in mammalian cells. FASEB J. 14, 242–254. [14] Kavlock, R.J., Ankley, G., Blancato, J., Breen, M., Conolly, R., Dix, D., Houck, K., Hubal, E., Judson, R., Rabinowitz, J., Richard, A., Setzer, R.W., Shah, I., Villeneuve, D., Weber, E., 2008. Computational toxicology–a state of the science mini review. Toxicol. Sci. 103, 14–27. [15] Knudsen, T., Kavlock, R., Shah, I., Dix, D., Judson, R., Singh, A., Lau, C., Hunter, E., 2008. The virtual embryo project (v-Embryo). [16] Kobayashi, K., Yamagami, S., Higuchi, T., Hosokawa, M., Chiba, K., 2004. Key structural features of ligands for activation of human pregnane X receptor. Drug Metab. Dispos. 32(4), 468–472. [17] Kohn, M.C., Lucier, G.W., Clark, G.C., Sewall, C., Tritscher, A.M., Portier, C.J., 1993. A mechanistic model of effects of dioxin on gene expression in the rat liver. Toxicol. Appl. Pharmacol. 120, 138–154. [18] Kohn, M.C., Walker, N.J., Kim, A.H., Portier, C.J., 2001. Physiological modeling of a proposed mechanism of enzyme inductino by TCDD. Toxicology 162, 193–208. [19] Kretschmer, X.C., Baldwin, W.S., 2005. CAR and PXR: xenosensors of endocrine disrupters? Chem. Biol. Interact. 155, 111–128. [20] Lehmann, J.M., Mckee, D.D., Watson, M.A., Willson, T.M., Moore, J.T., Kliewer, S.A., 1998. The human orphan nuclear receptor PXR is activated by compounds that regulate CYP3A4 gene expression and cause drug interactions. J. Clin. Invest. 102(5), 1016–1023. [21] Lodish, H., Berk, A., Zipursky, L.S., Matsudaira, P., Baltimore, D., Darnell, J., 2000. Molecular Cell Biology, 4th edn. Freeman, New York. [22] Loos, U., Musch, E., Jensen, J.C., Mikus, G., Schwabe, H.K., Eichelbaum, M., 1985. Pharmacokinetics of oral and intravenous rifampicin during chronic administration. Klin. Wochenschr. 63, 1205–1211. [23] Moore, L.B., Parks, D.J., Jones, S.A., Bledsoe, R.K., Consler, T.G., Stimmel, J.B., Goodwin, B., Liddle, C., Blanchards, S.G., Willson, T.M., Collins, J.L., Kliewer, S.A., 2000. Orphan nuclear receptors constitutive androstane receptor and pregnane x receptor share xenobiotic and steroid ligands. J. Biol. Chem. 275(20), 15122–15127. doi: 10.1074/jbc.M001215200 . [24] Novak, B., Tyson, J.J., 1997. Modeling the control of DNA replication in fission yeast. Proc. Natl. Acad. Sci. U.S.A. 94, 9147–9152. [25] Pascussi, J.M., Rober, A., Nguyen, M., Walrant-Debray, O., Garabedian, M., Martin, P., Pineau, T., Saric, J., Navarro, F., Maurel, P., Vilarem, M.J., 2005. Possible involvement of pregnane X receptor-enhanced CYP24 expression in drug-induced osteomalacia. J. Clin. Invest. 115(1), 177–186. doi: 10.1175/JCI200521867 . [26] Pirone, J.R., Elston, T.C., 2004. Fluctuations in transcription factor binding can explain the graded and binary responses observed in inducible gene expression. J. Theor. Biol. 226, 111–121. [27] Sheiner, L.B., Beal, S.L., 1985. Pharmacokinetic parameter estimates from several least squares procedures: Superiority of extended least squares. J. Pharmacokinet. Biopharm. 13(2), 185–201. [28] Slatter, J., Templeton, I.E., Castle, J., Kulkarni, A., Rushmore, T., Richards, K., He, Y., Dai, X., Cheng, O., 2006. Compendium of gene expression profiles comprising a baseline model of the human liver drug metabolism transcriptome. Xenobiotica 36(10–11), 938–962. doi: 10.1080/00498250600861728 . [29] Stelling, J., Gilles, E.D., 2004. Mathematical modeling of complex regulatory networks. IEEE Trans. Nanobiosci. 3(3), 172–179. doi: 10.1109/TNB.2004.833688 . [30] Svecova, L., Vrzal, R., Burysek, L., Anzenbacherova, E., Cerveny, L., Grim, J., Trejtnar, F., Kunes, J., Pour, M., Staud, F., Anzenbacher, P., Dvorak, Z., Pavek, P., 2008. Azone antimycotics differentially affect rifampicin-induced pregnane X receptor-mediated CYP3A4 gene expression. Drug Metab. Dispos. 36(2), 339–348. doi: 10.1124/dmd.107.018341 . [31] Tan, Y.-M., Butterworth, B.E., Gargas, M.L., Conolly, R.B., 2003. Biologically motivated computational modeling of chloroform cytolethality and regenerative cellular proliferation. Toxicol. Sci. 75, 192–200. doi: 10.1093/toxsci/kfg152 . [32] Tien, E., Negishi, M., 2006. Nuclear receptors CAR and PXR in the regulation of hepatic metabolism. Xenobiotica 36(10–11), 1152–1163. doi: 10.1080/00498250600861827 . [33] Timchalk, C., Walker, N.J., Mann, R.C., Metting, F.B., 2001. The virtual body workshop: current and future application of human biology models in environmental health research. Environ. Health Perspect. 109, 421–423. [34] Tyson, J.J., Chen, K.C., Novak, B., 2003. Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr. Opin. Cell Biol. 15, 221–231. [35] Tyson, J.J., Novak, B., 2001. Regulation of the eukaryotic cell cycle: molecular antagonism, hysteresis, and irreversible transitions. J. Theor. Biol. 210, 249–263. [36] Urquhart, B.L., Tirona, R.G., Kim, R.B., 2007. Nuclear receptors and the regulation of drug-metabolizing enzymes and drug transporters: Implications for interindividual variability in response to drugs. J. Clin. Pharmacol. 47, 566–578. doi: 10.1177/0091270007299930 . [37] Watkins, R.E., Maglich, J.M., Moore, L.B., Wisely, G.B., Noble, S.M., Davis-Searles, P.R., Lambert, M.H., Kliewer, S.A., Redinbo, M.R., 2003. A crystal structure of human PXR in complex with the St. John’s wort compound hyperforin. Biochemistry 42, 1430–1438. [38] Watkins, R.E., Wisely, G.B., Moore, L.B., Collins, J.L., Lambert, M.G., Williams, S.P., Willson, T.M., Kliewer, S.A., Redinbo, M.R., 2001. The human nuclear xenobiotic receptor PXR: structural determinants of directed promiscuity. Science 292, 2329–2333. [39] Wilson, Z.E., Rostami-Hodjegan, A., Burn, J.L., Tooley, A., Boyle, J., Ellis, S.W., Tucker, G.T., 2003. Inter-individual variability in levels of human microsomal protein and hepatocellularity per gram of liver. Br. J. Clin. Pharmacol. 56, 433–440. [40] Zhang, Q., Andersen, M.E., 2007. Dose response relationship in anti-stress gene regulatory networks. PLoS Comput. Biol. 3(3), e24. doi: 10.1371/journal.pcbi.0030024 . [41] Zheng, Z., Stewart, P.S., 2002. Penetration of rifampin through staphylococcus epidermis biofilms. Antimicrob. Agents Chemoter. 46(3), 900–903. doi: 10.1128/AAC.46.3.900-903.2002 . This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.