×

A planar algebra construction of the Haagerup subfactor. (English) Zbl 1203.46039

Summary: Most known examples of subfactors occur in families, coming from algebraic objects such as groups, quantum groups and rational conformal field theories. The Haagerup subfactor is the smallest index finite depth subfactor which does not occur in one of these families. In this paper, we construct the planar algebra associated to the Haagerup subfactor, which provides a new proof of the existence of the Haagerup subfactor. Our technique is to find the Haagerup planar algebra as a singly generated subfactor planar algebra that is contained inside a graph planar algebra.

MSC:

46L37 Subfactors and their classification
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] DOI: 10.1007/s002200050574 · Zbl 1014.46042
[2] J. Bion-Nadal, Current Topics in Operator Algebras (Nara, 1990) (World Sci. Publ., River Edge, NJ, 1991) pp. 104–113.
[3] DOI: 10.1016/j.jfa.2009.03.014 · Zbl 1172.46042
[4] Bisch D., Ann. Sci. École Norm. Sup. (4) 29 pp 329–
[5] DOI: 10.1215/S0012-7094-97-08715-9 · Zbl 0883.17013
[6] DOI: 10.1007/978-1-4613-9641-3
[7] Graham J. J., Enseign. Math. (2) 44 pp 173–
[8] U. Haagerup, Subfactors (Kyuzeso, 1993) (World Sci. Publ., River Edge, NJ, 1994) pp. 1–38.
[9] DOI: 10.2140/pjm.1994.166.305 · Zbl 0822.46073
[10] DOI: 10.1142/S0129055X01000818 · Zbl 1033.46506
[11] DOI: 10.1006/jfan.1993.1033 · Zbl 0791.46039
[12] DOI: 10.1007/BF01389127 · Zbl 0508.46040
[13] V. F. R. Jones, Essays on Geometry and Related Topics, Vols. 1, 2, Monogr. Enseign. Math. 38 (Geneva, 2001) pp. 401–463.
[14] DOI: 10.1016/0040-9383(87)90009-7 · Zbl 0622.57004
[15] DOI: 10.1006/jfan.1995.1003 · Zbl 0829.46048
[16] A. Ocneanu, Operator Algebras and Applications, Vol. 2, London Math. Soc. Lecture Note Ser. 136 (Cambridge Univ. Press, Cambridge, 1988) pp. 119–172.
[17] DOI: 10.1007/BF02392646 · Zbl 0853.46059
[18] DOI: 10.1007/BF01241137 · Zbl 0831.46069
[19] DOI: 10.1098/rspa.1971.0067 · Zbl 0211.56703
[20] Wenzl H., C. R. Math. Rep. Acad. Sci. Canada 9 pp 5–
[21] DOI: 10.1007/BF01404457 · Zbl 0663.46055
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.