Rajabi, A. Homotopy perturbation method for fin efficiency of convective straight fins with temperature-dependent thermal conductivity. (English) Zbl 1203.74148 Phys. Lett., A 364, No. 1, 33-37 (2007). Summary: The homotopy perturbation method (HPM) is used to evaluate the efficiency of straight fins with temperature-dependent thermal conductivity and to determine the temperature distribution within the fin. The fin efficiency of the straight fins with temperature-dependent thermal conductivity has been obtained as a function of thermo-geometric fin parameter and the thermal conductivity parameter describing the variation of the thermal conductivity. The results reveal that homotopy perturbation method is very effective and simple. The resulting correlation equations can assist thermal design engineers for designing of straight fins with temperature-dependent thermal conductivity. Cited in 16 Documents MSC: 74S30 Other numerical methods in solid mechanics (MSC2010) 65L99 Numerical methods for ordinary differential equations 35Q74 PDEs in connection with mechanics of deformable solids 74F05 Thermal effects in solid mechanics Keywords:homotopy perturbation method; fin efficiency; extended surface; variable thermal conductivity PDF BibTeX XML Cite \textit{A. Rajabi}, Phys. Lett., A 364, No. 1, 33--37 (2007; Zbl 1203.74148) Full Text: DOI References: [1] Kem, D. Q.; Kraus, D. A., Extended Surface Heat Transfer (1972), McGraw-Hill: McGraw-Hill New York [2] Aziz, A.; Hug, S. M.E., J. Heat Transfer, 97, 300 (1975) [3] Sohrabpour, S.; Razani, A., J. Franklin Inst., 330, 37 (1993) [4] Yu, L. T.; Chen, C. K., J. Franklin Inst. B, 336, 75 (1999) [5] Bouaziz, M. N.; Renak, S.; Hanini, S.; Bal, Y.; Bal, K., Int. J. Thermal Sci., 40, 843 (2001) [6] Hillermeier, C., Int. J. Optim. Theory Appl., 110, 3, 557 (2001) [7] Liao, S. J., Eng. Anal. Boundary Element, 20, 2, 91 (1997) [8] He, J. H., Commun. Nonlinear Sci. Numer. Simul., 3, 2, 92 (1998) [9] He, J. H., Commun. Nonlinear Sci. Numer. Simul., 3, 2, 106 (1998) [10] Ganji, D. D.; Rajabi, A., Int. Commun. Heat Mass Transfer, 33, 3, 391 (2006) [11] Rajabi, A.; Ganji, D. D.; Taherian, H., Phys. Lett. A, 360, 570 (2007) [12] He, J. H., Phys. Lett. A, 347, 228 (2005) [13] Ganji, D. D., Phys. Lett. A, 355, 337 (2006) [14] He, J. H., Int. J. Nonlinear Sci. Numer. Simul., 6, 2, 207 (2005) [15] He, J. H.; Wu, X. H., Chaos Solitons Fractals, 29, 1, 108 (2006) [16] He, J. H., Phys. Lett. A, 350, 87 (2006) [17] Ganji, D. D.; Rafei, M., Phys. Lett. A, 356, 131 (2006) · Zbl 1160.35517 [18] Abbasbandy, S., Appl. Math. Comput., 173, 493 (2006) [19] Abbasbandy, S., Chaos Solitons Fractals, 30, 1206 (2006) [20] Abbasbandy, S., Appl. Math. Comput., 172, 431 (2006) [21] Abbasbandy, S., Appl. Math. Comput., 172, 485 (2006) [22] Abbasbandy, S., Appl. Math. Comput., 173, 493 (2006) [23] He, J. H., Int. J. Nonlinear Mech., 35, 1, 37 (2000) [24] He, J. H., J. Comput. Math. Appl. Mech. Eng., 178, 3/4, 257 (1999) [25] Incropera, F. P.; Dewitt, D. P., Introduction to Heat Transfer (1996), Wiley: Wiley New York, p. 114 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.