Jia, Qiang Hyperchaos generated from the Lorenz chaotic system and its control. (English) Zbl 1203.93086 Phys. Lett., A 366, No. 3, 217-222 (2007). Summary: A hyperchaotic Lorenz system is constructed via state feedback control. Abundant dynamics of the hyperchaotic system is studied using the Lyapunov exponents, Poincaré section and bifurcation diagram. Furthermore, effective linear feedback controllers are designed for stabilizing hyperchaos to unstable equilibrium, periodic orbits and quasi-periodic orbit. Numerical simulations are given to illustrate and verify the results. Cited in 64 Documents MSC: 93B52 Feedback control 93C05 Linear systems in control theory 37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior 34H10 Chaos control for problems involving ordinary differential equations PDF BibTeX XML Cite \textit{Q. Jia}, Phys. Lett., A 366, No. 3, 217--222 (2007; Zbl 1203.93086) Full Text: DOI References: [1] Fradkov, A. L.; Evans, R. J., Annu. Rev. Control, 29, 33 (2005) [2] Rössler, O. E., Phys. Lett. A, 71, 155 (1979) [3] Li, Y.; Tang, W. K.S.; Chen, G., Int. J. Bifur. Chaos, 10, 3367 (2005) [4] Li, Y.; Tang, W. K.S.; Chen, G., Int. J. Circuit Theory Appl., 33, 235 (2005) [5] Chen, A., Physica A, 364, 103 (2006) [6] Wang, F.-Q.; Liu, C.-X., Chin. Phys., 15, 963 (2006) [7] Liu, C., Chaos Solitons Fractals, 22, 1031 (2004) [8] Ning, C.; Haken, H., Phys. Rev. E, 41, 3826 (1990) [9] Yan, Z., Appl. Math. Comput., 168, 1239 (2005) [10] Wolf, A.; Swift, J.; Swinney, H.; Vastano, J., Physica D, 16, 285 (1985) [11] Kaplan, J. L.; York, Y. A., Commun. Math. Phys., 67, 93 (1979) [12] Gambino, G.; Lombardo, M. C.; Sammartino, M., Chaos Solitons Fractals, 29, 829 (2006) [13] Wang, X.; Tian, L., Chaos Solitons Fractals, 27, 31 (2006) [14] Liao, X.; Yu, P., Chaos Solitons Fractals, 29, 91 (2006) [15] Guan, X.; Feng, G.; Chen, C., Phys. Lett. A, 348, 210 (2006) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.