×

An algorithm for finding a common solution for a system of mixed equilibrium problem, quasivariational inclusion problem, and fixed point problem of nonexpansive semigroup. (English) Zbl 1206.47078

Summary: We introduce a hybrid iterative scheme for finding a common element of the set of solutions for a system of mixed equilibrium problems, the set of common fixed points for a nonexpansive semigroup, and the set of solutions of the quasi-variational inclusion problem with multivalued maximal monotone mappings and inverse-strongly monotone mappings in Hilbert space. Under suitable conditions, some strong convergence theorems are proved. Our results extend recent results announced by some authors.

MSC:

47J25 Iterative procedures involving nonlinear operators
47H20 Semigroups of nonlinear operators
47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc.
47J22 Variational and other types of inclusions
47H05 Monotone operators and generalizations
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] Chang SS: Set-valued variational inclusions in Banach spaces. Journal of Mathematical Analysis and Applications 2000, 248(2):438-454. 10.1006/jmaa.2000.6919 · Zbl 1031.49018 · doi:10.1006/jmaa.2000.6919
[2] Chang SS: Existence and approximation of solutions for set-valued variational inclusions in Banach space. Nonlinear Analysis: Theory, Methods & Applications 2001, 47(1):583-594. 10.1016/S0362-546X(01)00203-6 · Zbl 1042.49510 · doi:10.1016/S0362-546X(01)00203-6
[3] Demyanov VF, Stavroulakis GE, Polyakova LN, Panagiotopoulos PD: Quasidifferentiability and Nonsmooth Modelling in Mechanics, Engineering and Economics, Nonconvex Optimization and Its Applications. Volume 10. Kluwer Academic Publishers, Dordrecht, The Netherlands; 1996:xviii+348. · Zbl 1076.49500 · doi:10.1007/978-1-4615-4113-4
[4] Lions J-L, Stampacchia G: Variational inequalities. Communications on Pure and Applied Mathematics 1967, 20: 493-519. 10.1002/cpa.3160200302 · Zbl 0152.34601 · doi:10.1002/cpa.3160200302
[5] Zhang S-s, Lee JHW, Chan CK: Algorithms of common solutions to quasi variational inclusion and fixed point problems. Applied Mathematics and Mechanics 2008, 29(5):571-581. 10.1007/s10483-008-0502-y · Zbl 1196.47047 · doi:10.1007/s10483-008-0502-y
[6] Ceng L-C, Yao J-C: A hybrid iterative scheme for mixed equilibrium problems and fixed point problems. Journal of Computational and Applied Mathematics 2008, 214(1):186-201. 10.1016/j.cam.2007.02.022 · Zbl 1143.65049 · doi:10.1016/j.cam.2007.02.022
[7] Li S, Li L, Su Y: General iterative methods for a one-parameter nonexpansive semigroup in Hilbert space. Nonlinear Analysis: Theory, Methods & Applications 2009, 70(9):3065-3071. 10.1016/j.na.2008.04.007 · Zbl 1177.47075 · doi:10.1016/j.na.2008.04.007
[8] Saeidi S: Iterative algorithms for finding common solutions of variational inequalities and systems of equilibrium problems and fixed points of families and semigroups of nonexpansive mappings. Nonlinear Analysis: Theory, Methods & Applications 2009, 70(12):4195-4208. 10.1016/j.na.2008.09.009 · Zbl 1225.47110 · doi:10.1016/j.na.2008.09.009
[9] Yao Y, Cho YJ, Chen R: An iterative algorithm for solving fixed point problems, variational inequality problems and mixed equilibrium problems. Nonlinear Analysis: Theory, Methods & Applications 2009, 71(7-8):3363-3373. 10.1016/j.na.2009.01.236 · Zbl 1166.49013 · doi:10.1016/j.na.2009.01.236
[10] Kumam W, Kumam P: Hybrid iterative scheme by a relaxed extragradient method for solutions of equilibrium problems and a general system of variational inequalities with application to optimization. Nonlinear Analysis: Hybrid Systems 2009, 3(4):640-656. 10.1016/j.nahs.2009.05.007 · Zbl 1175.49009 · doi:10.1016/j.nahs.2009.05.007
[11] Colao V, Acedo GL, Marino G: An implicit method for finding common solutions of variational inequalities and systems of equilibrium problems and fixed points of infinite family of nonexpansive mappings. Nonlinear Analysis: Theory, Methods & Applications 2009, 71(7-8):2708-2715. 10.1016/j.na.2009.01.115 · Zbl 1175.47058 · doi:10.1016/j.na.2009.01.115
[12] He H, Liu S, Zhou H: An explicit method for finding common solutions of variational inequalities and systems of equilibrium problems and fixed points of an infinite family of nonexpansive mappings. Nonlinear Analysis: Theory, Methods & Applications 2010, 72(6):3124-3135. 10.1016/j.na.2009.12.002 · Zbl 1225.47098 · doi:10.1016/j.na.2009.12.002
[13] Hu CS, Cai G: Viscosity approximation schemes for fixed point problems and equilibrium problems and variational inequality problems. Nonlinear Analysis: Theory, Methods & Applications 2010, 72(3-4):1792-1808. 10.1016/j.na.2009.09.021 · Zbl 1226.47072 · doi:10.1016/j.na.2009.09.021
[14] Takahashi S, Takahashi W: Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces. Journal of Mathematical Analysis and Applications 2007, 331(1):506-515. 10.1016/j.jmaa.2006.08.036 · Zbl 1122.47056 · doi:10.1016/j.jmaa.2006.08.036
[15] Chang SS, Lee HWJ, Chan CK: A new method for solving equilibrium problem fixed point problem and variational inequality problem with application to optimization. Nonlinear Analysis: Theory, Methods & Applications 2009, 70(9):3307-3319. 10.1016/j.na.2008.04.035 · Zbl 1198.47082 · doi:10.1016/j.na.2008.04.035
[16] Dan P: Nolinear Mappings of Monotone Type. Sijthoff and Noordhoff, Alphen aan den Rijn, The Netherlands; 1978. · Zbl 0423.47021
[17] Shimizu T, Takahashi W: Strong convergence to common fixed points of families of nonexpansive mappings. Journal of Mathematical Analysis and Applications 1997, 211(1):71-83. 10.1006/jmaa.1997.5398 · Zbl 0883.47075 · doi:10.1006/jmaa.1997.5398
[18] Marino G, Xu H-K: A general iterative method for nonexpansive mappings in Hilbert spaces. Journal of Mathematical Analysis and Applications 2006, 318(1):43-52. 10.1016/j.jmaa.2005.05.028 · Zbl 1095.47038 · doi:10.1016/j.jmaa.2005.05.028
[19] Xu HK: An iterative approach to quadratic optimization. Journal of Optimization Theory and Applications 2003, 116(3):659-678. 10.1023/A:1023073621589 · Zbl 1043.90063 · doi:10.1023/A:1023073621589
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.