Asymptotic imaging of perfectly conducting cracks. (English) Zbl 1210.35279

Summary: We consider cracks with Dirichlet boundary conditions. We first derive an asymptotic expansion of the boundary perturbations that are due to the presence of a small crack. Based on this formula, we design a noniterative approach for locating a collection of small cracks. In order to do so, we construct a response matrix from the boundary measurements. The location and the length of the crack are estimated, respectively, from the projection onto the noise space and the first significant singular value of the response matrix. Indeed, the direction of the crack is estimated from the second singular vector. We then consider an extended crack with Dirichlet boundary conditions. We rigorously derive an asymptotic expansion for the boundary perturbations that are due to a shape deformation of the crack. To reconstruct an extended crack from many boundary measurements, we develop two methods for obtaining a good guess. Several numerical experiments show how the proposed techniques for imaging small cracks as well as those for obtaining good initial guesses toward reconstructing an extended crack behave.


35R30 Inverse problems for PDEs
35B25 Singular perturbations in context of PDEs
35C20 Asymptotic expansions of solutions to PDEs
78A46 Inverse problems (including inverse scattering) in optics and electromagnetic theory
Full Text: DOI Link