×

On neighborhoods and partial sums of certain meromorphic multivalent functions. (English) Zbl 1211.30034

Summary: The main purpose of the present paper is to derive some properties associated with the neighborhoods and partial sums of the meromorphic multivalent functions in a certain class.

MSC:

30C45 Special classes of univalent and multivalent functions of one complex variable (starlike, convex, bounded rotation, etc.)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Wang, Z.-G.; Sun, Y.; Zhang, Z.-H., Certain classes of meromorphic multivalent functions, Comput. Math. Appl., 58, 1408-1417 (2009) · Zbl 1189.30045
[2] Goodman, A. W., Univalent functions and nonanalytic curves, Proc. Amer. Math. Soc., 8, 598-601 (1957) · Zbl 0166.33002
[3] Ruscheweyh, S., Neighborhoods of univalent functions, Proc. Amer. Math. Soc., 81, 521-527 (1981) · Zbl 0458.30008
[4] Altintaş, O., Neighborhoods of certain \(p\)-valently analytic functions with negative coefficients, Appl. Math. Comput., 187, 47-53 (2007) · Zbl 1119.30003
[5] Altintaş, O.; Irmak, H.; Srivastava, H. M., Neighborhoods for certain subclasses of multivalently analytic functions defined by using a differential operator, Comput. Math. Appl., 55, 331-338 (2008) · Zbl 1155.30349
[6] Altintaş, O.; Owa, S., Neighborhoods of certain analytic functions with negative coefficients, Int. J. Math. Math. Sci., 19, 797-800 (1996) · Zbl 0915.30008
[7] Altintaş, O.; Özkan, Ö.; Srivastava, H. M., Neighborhoods of a class of analytic functions with negative coefficients, Appl. Math. Lett., 13, 63-67 (2000) · Zbl 0955.30015
[8] Altintaş, O.; Özkan, Ö.; Srivastava, H. M., Neighborhoods of a certain family of multivalent functions with negative coefficients, Comput. Math. Appl., 47, 1667-1672 (2004) · Zbl 1068.30006
[9] Caˇtaş, A., Neighborhoods of a certain class of analytic functions with negative coefficients, Banach J. Math. Anal., 3, 111-121 (2009) · Zbl 1165.30005
[10] Liu, J.-L.; Srivastava, H. M., A linear operator and associated families of meromorphically multivalent functions, J. Math. Anal. Appl., 259, 566-581 (2001) · Zbl 0997.30009
[11] Liu, J.-L.; Srivastava, H. M., Classes of meromorphically multivalent functions associated with the generalized hypergeometric function, Math. Comput. Modelling, 39, 21-34 (2004) · Zbl 1049.30008
[12] Liu, J.-L.; Srivastava, H. M., Subclasses of meromorphically multivalent functions associated with a certain linear operator, Math. Comput. Modelling, 39, 35-44 (2004) · Zbl 1049.30009
[13] Frasin, B. A., Neighborhoods of certain multivalent functions with negative coefficients, Appl. Math. Comput., 193, 1-6 (2007) · Zbl 1193.30013
[14] Keerthi, B. S.; Gangadharan, A.; Srivastava, H. M., Neighborhoods of certain subclasses of analytic functions of complex order with negative coefficients, Math. Comput. Modelling, 47, 271-277 (2008) · Zbl 1140.30005
[15] Srivastava, H. M.; Eker, S. S.; Seker, B., Inclusion and neighborhood properties for certain classes of multivalently analytic functions of complex order associated with the convolution structure, Appl. Math. Comput., 212, 66-71 (2009) · Zbl 1166.30307
[16] Aouf, M. K.; Mostafa, A. O., On partial sums of certain meromorphic \(p\)-valent functions, Math. Comput. Modelling, 50, 1325-1331 (2009) · Zbl 1185.30013
[17] Aouf, M. K.; Silverman, H., Partial sums of certain meromorphic \(p\)-valent functions, J. Inequal. Pure Appl. Math., 7, 1-7 (2006), Article 119 (electronic) · Zbl 1131.30307
[18] Cho, N. E.; Owa, S., Partial sums of certain meromorphic functions, J. Inequal. Pure Appl. Math., 5, 1-7 (2004), Article 30 (electronic) · Zbl 1054.30011
[19] Frasin, B. A., Partial sums of certain analytic and univalent functions, Acta Math. Acad. Paedagog. Nyházi. (N.S.), 21, 135-145 (2005), (electronic) · Zbl 1092.30019
[20] Frasin, B. A., Generalization of partial sums of certain analytic and univalent functions, Appl. Math. Lett., 21, 735-741 (2008) · Zbl 1152.30308
[21] Goyal, S. P.; Bhagtani, M.; Vijaywargiya, P., Partial sums of certain meromorphic multivalent functions, Int. J. Contemp. Math. Sci., 3, 1295-1306 (2008) · Zbl 1168.30308
[22] Owa, S.; Srivastava, H. M.; Saito, N., Partial sums of certain classes of analytic functions, Internat. J. Comput. Math., 81, 1239-1256 (2004) · Zbl 1060.30022
[23] Silverman, H., Partial sums of starlike and convex functions, J. Math. Anal. Appl., 209, 221-227 (1997) · Zbl 0894.30010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.