×

Detailed examination of transport coefficients in cubic-plus-quartic oscillator chains. (English) Zbl 1214.82097

Summary: We examine the thermal conductivity and bulk viscosity of a one-dimensional (1D) chain of particles with cubic-plus-quartic interparticle potentials and no on-site potentials. This system is equivalent to the FPU-\(\alpha \beta\) system in a subset of its parameter space. We identify three distinct frequency regimes which we call the hydrodynamic regime, the perturbative regime and the collisionless regime. In the lowest frequency regime (the hydrodynamic regime), heat is transported ballistically by long wavelength sound modes. The model that we use to describe this behaviour predicts that as \(\omega \rightarrow 0\) the frequency dependent bulk viscosity \(\hat{\zeta}(\omega)\) and the frequency dependent thermal conductivity \(\tilde{\kappa}(\omega)\) should diverge with the same power law dependence on \(\omega\). Thus, we can define the bulk Prandtl number \(\mathrm{Pr}_{\zeta}=k_{B}\hat{\zeta}(\omega)/(m\hat{\kappa}(\omega))\), where \(m\) is the particle mass and \(k_{B}\) is Boltzmann’s constant. This dimensionless ratio should approach a constant value as \(\omega \rightarrow 0\). We use mode-coupling theory to predict the \(\omega \rightarrow 0\) limit of \(\mathrm{Pr} _{\zeta}\). Values of \(\mathrm{Pr} _{\zeta}\) obtained from simulations are in agreement with these predictions over a wide range of system parameters. In the middle frequency regime, which we call the perturbative regime, heat is transported by sound modes which are damped by four-phonon processes. This regime is characterized by an intermediate-frequency plateau in the value of \(\hat{\kappa}(\omega)\). We find that the value of \(\hat{\kappa}(\omega)\) in this plateau region is proportional to \(T^{- 2}\) where \(T\) is the temperature; this is in agreement with the expected result of a four-phonon Boltzmann-Peierls equation calculation. The Boltzmann-Peierls approach fails, however, to give a nonvanishing bulk viscosity for all FPU-\(\alpha \beta\) chains. We call the highest frequency regime the collisionless regime since at these frequencies the observing times are much shorter than the characteristic relaxation times of phonons.

MSC:

82C70 Transport processes in time-dependent statistical mechanics
82C40 Kinetic theory of gases in time-dependent statistical mechanics
76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
82C20 Dynamic lattice systems (kinetic Ising, etc.) and systems on graphs in time-dependent statistical mechanics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Akhieser, A.: On the absorption of sound in solids. J. Phys. (USSR) 1, 277–287 (1939)
[2] Alder, B.J., Wainwright, T.E.: Velocity autocorrelations for hard spheres. Phys. Rev. Lett. 18, 988–990 (1967) · doi:10.1103/PhysRevLett.18.988
[3] Alder, B.J., Wainwright, T.E., Gass, D.M.: Decay of time correlations in two dimensions. Phys. Rev. A 4, 233–237 (1971) · doi:10.1103/PhysRevA.4.233
[4] Ashcroft, N.W., Mermin, N.D.: In: Solid State Physics, p. 507. Harcourt Brace, Orlando (1976)
[5] Ashcroft, N.W., Mermin, N.D.: In: Solid State Physics, p. 493. Harcourt Brace, Orlando (1976)
[6] Ashcroft, N.W., Mermin, N.D.: In: Solid State Physics, p. 508. Harcourt Brace, Orlando (1976). Problem 3 · Zbl 1107.82300
[7] Casati, G.: Controlling the heat flow: now it is possible. Chaos 15, 015120 (2005) · doi:10.1063/1.1869912
[8] Cipriani, P., Denisov, S., Politi, A.: From anomalous energy diffusion to Levy walks and heat conductivity in one-dimensional systems. Phys. Rev. Lett. 94, 244–301 (2005) · doi:10.1103/PhysRevLett.94.244301
[9] Delfini, L., Lepri, S., Livi, R., Politi, A.: Anomalous kinetics and transport from 1D self-consistent mode-coupling theory. J. Stat. Mech. P02007, 1–17 (2007)
[10] Denisov, S., Klafter, J., Urbakh, M.: Dynamical heat channels. Phys. Rev. Lett. 91, 194–301 (2003) · doi:10.1103/PhysRevLett.91.194301
[11] DeVault, G.P.: Lowest nonvanishing contribution to lattice viscosity. Phys. Rev. 155, 875–882 (1967) · doi:10.1103/PhysRev.155.875
[12] Ernst, M.H., Hauge, E.H., van Leeuwen, J.M.J.: Asymptotic time behaviour of correlation functions. I. Kinetic terms. Phys. Rev. A 1, 2055–2065 (1971) · doi:10.1103/PhysRevA.4.2055
[13] Ernst, M.H., Hauge, E.H., van Leeuwen, J.M.J.: Asymptotic time behaviour of correlation functions. II. Kinetic and potential terms. J. Stat. Phys. 15, 7–22 (1976) · doi:10.1007/BF01012807
[14] Ernst, M.H., Hauge, E.H., van Leeuwen, J.M.J.: Asymptotic time behaviour of correlation functions. III. Local equilibrium and mode-coupling theory. J. Stat. Phys. 15, 23–58 (1976) · doi:10.1007/BF01012808
[15] Ford, J.: The Fermi-Pasta-Ulam problem: paradox turns discovery. Phys. Rep. 213, 271–310 (1992) · doi:10.1016/0370-1573(92)90116-H
[16] Forster, D.: Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions. Benjamin, Reading (1975)
[17] Grassberger, P., Nagler, W., Yang, L.: Heat conduction and entropy production in a one-dimensional hard-particle gas. Phys. Rev. Lett. 89, 180601 (2002) · doi:10.1103/PhysRevLett.89.180601
[18] Gurevich, V.L.: In: Transport in Phonon Systems, p. 244. North Holland, Amsterdam (1986)
[19] Lee-Dadswell, G.R.: Prediction of transport coefficients in one-dimensional systems. Ph.D. Thesis, University of Guelph (2005)
[20] Lee-Dadswell, G.R., Nickel, B.G., Gray, C.G.: Thermal conductivity and bulk viscosity in quartic oscillator chains. Phys. Rev. E 72, 031202 (2005) · Zbl 1214.82097 · doi:10.1103/PhysRevE.72.031202
[21] Lepri, S., Livi, R., Politi, A.: On the anomalous thermal conductivity of one-dimensional lattices. Europhys. Lett. 43, 271–276 (1998) · doi:10.1209/epl/i1998-00352-3
[22] Lepri, S., Livi, R., Politi, A.: Thermal conduction in classical low-dimensional lattices. Phys. Rep. 377, 1–80 (2003) · Zbl 01876230 · doi:10.1016/S0370-1573(02)00558-6
[23] Lepri, S., Livi, R., Politi, A.: Universality of anomalous one-dimensional heat conductivity. Phys. Rev. E 68, 067102 (2003) · doi:10.1103/PhysRevE.68.067102
[24] Lifshitz, E.M., Pitaevskii, L.P.: Physical Kinetics. Butterworth-Heinemann, Oxford (1981)
[25] Lukkarinen, J., Spohn, H.: Anomalous energy transport in the FPU-beta chain. ArXiv:0704.1607 · Zbl 1214.82057
[26] Narayan, O., Ramaswamy, S.: Anomalous heat conduction in one-dimensional momentum-conserving systems. Phys. Rev. Lett. 89, 200601 (2002) · doi:10.1103/PhysRevLett.89.200601
[27] Nickel, B.G.: The solution to the 4-phonon Boltzmann equation for a 1-d chain in a thermal gradient. J. Phys. A 40, 1219–1238 (2007) · Zbl 1129.82026 · doi:10.1088/1751-8113/40/6/003
[28] Omelyan, I.P., Mryglod, I.M., Folk, R.: Symplectic analytically integrable decomposition algorithms: classification, derivation, and application to molecular dynamics, quantum and celestial mechanics simulations. Comput. Phys. Commun. 151, 272–314 (2003) · Zbl 1196.65193 · doi:10.1016/S0010-4655(02)00754-3
[29] Peierls, R.E.: On the kinetic theory of thermal conduction in crystals. In: Dalitz, R.H., Peierls, R.E. (eds.) Selected Scientific Papers of Rudoph Peierls with Commentary, pp. 15–48. World Scientific, Singapore (1997). Originally published in German in Ann. Phys. 3, 1055–1101 (1929)
[30] Peierls, R.E.: Quantum Theory of Solids. Oxford University Press, London (1955) · Zbl 0068.23207
[31] Pereverzev, A.: Fermi-Pasta-Ulam {\(\beta\)} lattice: Peierls equation and anomalous heat conductivity. Phys. Rev. E 68, 056124 (2003) · doi:10.1103/PhysRevE.68.056124
[32] Pomeau, Y., Résibois, P.: Time dependent correlation functions and mode-mode coupling theories. Phys. Rep. 19, 63–139 (1975) · doi:10.1016/0370-1573(75)90019-8
[33] Prosen, T., Campbell, D.K.: Momentum conservation implies anomalous energy transport in 1D classical lattices. Phys. Rev. Lett. 84, 2857–2860 (2000) · doi:10.1103/PhysRevLett.84.2857
[34] Santhosh, G., Kumar, D.: Anomalous thermal conduction in one dimension: a quantum calculation. Phys. Rev. E 76, 021105 (2007) · doi:10.1103/PhysRevE.76.021105
[35] Toda, M., Kubo, R., Saitô, N.: Statistical Physics I: Equilibrium Statistical Mechanics. Springer, Berlin (1983) · Zbl 0936.60093
[36] Wang, J.S., Li, B.: Intriguing heat conduction of a chain with transverse motions. Phys. Rev. Lett. 92, 074302 (2004) · doi:10.1103/PhysRevLett.92.074302
[37] Woodruff, T.O., Ehrenreich, H.: Absorption of sound in insulators. Phys. Rev. 123, 1553–1559 (1961) · Zbl 0098.21402 · doi:10.1103/PhysRev.123.1553
[38] Yoshida, T.: Construction of higher order symplectic integrators. Phys. Lett. A 150, 262–268 (1990) · doi:10.1016/0375-9601(90)90092-3
[39] Yu, C., Shi, L., Yao, Z., Li, D., Majumdar, A.: Thermal conductance and thermopower of an individual single-wall carbon nanotube. Nano Lett. 5, 1842–1846 (2005) · doi:10.1021/nl051044e
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.