×

Generalized derivative and \(\pi \)-derivative for set-valued functions. (English) Zbl 1217.26065

Summary: We study the generalized derivative and the \(\pi \)-derivative for interval-valued functions. We show the connections between these derivatives. Some illustrative examples and applications to interval differential equations and fuzzy functions are presented.

MSC:

26E50 Fuzzy real analysis
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Allahviranloo, T.; Kiani, N. A.; Barkhordaria, M., Toward the existence and uniqueness of solutions of second-order fuzzy differential equations, Information Sciences, 179, 1207-1215 (2009) · Zbl 1171.34301
[2] Allahviranloo, T.; Kiani, N. A.; Motamedib, N., Solving fuzzy differential equations by differential transformation method, Information Sciences, 179, 955-956 (2009) · Zbl 1160.65322
[3] Aubin, J. P.; Cellina, A., Differential Inclusions (1984), Springer-Verlag: Springer-Verlag New York
[4] Aubin, J. P.; Franskowska, H., Set-Valued Analysis (1990), Birkhäuser: Birkhäuser Boston
[5] Aubin, J. P.; Franskowska, H., Introduction: set-valued analysis in control theory, Set-Valued Analysis, 8, 1-9 (2000)
[6] Assev, S. M., Quasilinear operators and their application in the theory of multivalued mappings, Proceedings of the Steklov Institute of Mathematics, 2, 23-52 (1986) · Zbl 0593.46038
[7] Agarwal, R. P.; O’Regan, D., Existence for set differential equations via multivalued operator equations, (Differential Equations and Applications, vol. 5 (2007), Nova Sci. Publ: Nova Sci. Publ New York), 1-5 · Zbl 0993.47041
[8] Banks, H. T.; Jacobs, M. Q., A differential calculus for multifunctions, Journal of Mathematical Analysis and Applications, 29, 246-272 (1970) · Zbl 0191.43302
[9] Bede, B.; Gal, S. G., Generalizations of the differentiability of fuzzy number valued functions with applications to fuzzy differential equation, Fuzzy Sets and Systems, 151, 581-599 (2005) · Zbl 1061.26024
[10] Bede, B.; Rudas, I. J.; Bencsik, A. L., First order linear fuzzy differential equations under generalized differentiability, Information Sciences, 177, 1648-1662 (2007) · Zbl 1119.34003
[11] Bede, B., Note on numerical solutions of fuzzy differential equations by predictor-corrector method, Information Sciences, 178, 1917-1922 (2008) · Zbl 1183.65092
[12] De Blasi, F. S., On the differentiability of multifunctions, Pacific Journal of Mathematics, 66, 67-81 (1976) · Zbl 0348.58004
[13] De Blasi, F. S.; Lakshmikantham, V.; Bhaskar, T. G., An existence theorem for set differential inclusions in a semilinear metric space, Control and Cybernetics, 36, 3, 571-582 (2007) · Zbl 1166.49019
[14] Y. Chalco-Cano, H. Román-Flores, M.A. Rojas-Medar, Fuzzy differential equations with generalized derivative, in: Proceedings of 27th NAFIPS International Conference IEEE, 2008.; Y. Chalco-Cano, H. Román-Flores, M.A. Rojas-Medar, Fuzzy differential equations with generalized derivative, in: Proceedings of 27th NAFIPS International Conference IEEE, 2008.
[15] Chalco-Cano, Y.; Román-Flores, H., On the new solution of fuzzy differential equations, Chaos, Solitons & Fractals, 38, 112-119 (2008) · Zbl 1142.34309
[16] Chalco-Cano, Y.; Román-Flores, H., Comparison between some approaches to solve fuzzy differential equations, Fuzzy Sets and Systems, 160, 1517-1527 (2008) · Zbl 1198.34005
[17] Chalco-Cano, Y.; Rojas-Medar, M. A.; Román-Flores, H., Sobre ecuaciones diferenciales difusas, Boletı´n de la Sociedad Española de Matemática Aplicada, 41, 91-99 (2007)
[18] Y. Chalco-Cano, H. Román-Flores, M.D. Jiménez-Gamero, Fuzzy differential equation with Π;; Y. Chalco-Cano, H. Román-Flores, M.D. Jiménez-Gamero, Fuzzy differential equation with Π;
[19] Diamond, P.; Kloeden, P., Metric Space of Fuzzy Sets: Theory and Application (1994), World Scientific: World Scientific Singapore
[20] Diamond, P., Brief note on the variation of constants formula for fuzzy differential equations, Fuzzy Sets and Systems, 129, 65-71 (2002) · Zbl 1021.34048
[21] Diamond, P., Time-dependent differential inclusions, cocycle attractors and fuzzy differential equations, IEEE Transactions on Fuzzy Systems, 7, 734-740 (1999)
[22] Ding Ming Ma, Z.; Kandel, A., Existence of solutions of fuzzy differential equations with parameters, Information Sciences, 99, 205-217 (1997) · Zbl 0914.34057
[23] Gnana Bhaskar, T.; Lakshmikantham, V., Set differential equations and flow invariance, Journal of Applied Analysis, 82, 2, 357-368 (2003) · Zbl 1047.34010
[24] Hukuhara, M., Integration des applications mesurables dont la valeur est un compact convexe, Funkcialaj Ekvacioj, 10, 205-223 (1967) · Zbl 0161.24701
[25] Hüllermeier, E., An approach to modeling and simulation of uncertain dynamical systems, International Journal Uncertainty, Fuzziness Knowledge-Bases Systems, 5, 117-137 (1997) · Zbl 1232.68131
[26] Ibrahim, A-G. M., On the differentiability of set-valued functions defined on a Banach space and mean value theorem, Applied Mathematics and Computers, 74, 76-94 (1996) · Zbl 0839.46037
[27] Jowers, L. J.; Buckley, J. J.; Reilly, K. D., Simulating continuous fuzzy systems, Information Sciences, 177, 436-448 (2007) · Zbl 1140.34306
[28] Lakshmikantham, V.; Tolstonogov, A. A., Existence and interrelation between set and fuzzy differential equations, Nonlinear Analysis, 55, 3, 255-268 (2003) · Zbl 1035.34064
[29] Lakshmikantham, V.; Mohapatra, R., Theory of Fuzzy Differential Equations and Inclusions (2003), Taylor & Francis: Taylor & Francis London · Zbl 1072.34001
[30] Markov, S., Calculus for interval functions of a real variable, Computing, 22, 325-337 (1979) · Zbl 0408.65026
[31] Mahmoud Taheri, S., C-fuzzy numbers and a dual of extension principle, Information Sciences, 178, 827-835 (2008) · Zbl 1127.03330
[32] Moore, R. E., Interval Analysis (1966), Prince-Hall: Prince-Hall Englewood Cliffs, NJ · Zbl 0176.13301
[33] Moore, R. E., Computational Functional Analysis (1985), Ellis Horwood Limited: Ellis Horwood Limited England · Zbl 0574.46001
[34] Misukoshi, M.; Chalco-Cano, Y.; Román-Flores, H.; Bassanezi, R. C., Fuzzy differential equations and the extension principle, Information Sciences, 177, 3627-3635 (2007) · Zbl 1147.34311
[35] Nieto, J. J.; Rodrı´guez-López, R., Euler polygonal method for metric dynamical systems, Information Sciences, 177, 4256-4270 (2007) · Zbl 1142.65068
[36] Pederson, S.; Sambandham, M., Numerical solution of hybrid fuzzy differential equation IVPs by a characterization theorem, Information Sciences, 179, 319-328 (2009) · Zbl 1165.65041
[37] Plotnikova, N. V., Systems of linear differential equations with \(π\)-derivative and linear differential inclusions, Sbornik: Mathematics, 196, 1677-1691 (2005) · Zbl 1148.34307
[38] Puri, M.; Ralescu, D., Differential and fuzzy functions, Journal of Mathematical Analysis and Applications, 91, 552-558 (1983) · Zbl 0528.54009
[39] Radströn, H., An embedding theorem for spaces of convex sets, Proceedings of the American Mathematical Society, 3, 165-169 (1952)
[40] Rodriguez-López, R., Comparison results for fuzzy differential equations, Information Sciences, 178, 1756-1779 (2008) · Zbl 1147.34025
[41] Rodrı´guez-Muñis, L. J.; López-Dı´az, M.; Gil, M. A., The s-differentiability of a fuzzy-valued mapping, Information Sciences, 151, 283-299 (2003) · Zbl 1027.26028
[42] Román-Flores, H.; Rojas-Medar, M., Embedding of level-continuous fuzzy sets on Banach spaces, Information Sciences, 144, 227-247 (2002) · Zbl 1034.46079
[43] Stefanini, L.; Bede, B., Generalized Hukuhara differentiability of interval-valued functions and interval differential equations, Nonlinear Analysis, 71, 1311-1328 (2009) · Zbl 1188.28002
[44] Stefanini, L., A generalization of Hukuhara difference and division for interval and fuzzy arithmetic, Fuzzy Sets and Systems, 161, 1564-1584 (2010) · Zbl 1188.26019
[45] Seikkala, S., On the fuzzy initial value problem, Fuzzy Sets and Systems, 24, 319-330 (1987) · Zbl 0643.34005
[46] Tolstonogov, A., Differential Inclusions in a Banach Space (2000), Kluwer Academic Publishers: Kluwer Academic Publishers The Netherlands · Zbl 1021.34002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.