Stratonovich-Weyl correspondence for compact semisimple Lie groups. (English) Zbl 1218.22008

Let \(G\) be a compact semisimple Lie group with Lie algebra \(\mathfrak{g}\) and \(\pi_{\lambda}\) a unitary irreducible representation of \(G\) with highest weight \(\lambda\). The representation \(\pi_{\lambda}\) is induced by the character \(\chi\) of the subgroup \(H\) of \(G\), where \(H\) is the centralizer of a torus, and is realized on a finite-dimensional Hilbert space \(\mathcal{H}\) of holomorphic functions defined on dense open subsets of \(M=G/H\), in fact global sections of the \(G_{\mathbb{C}}\)-homogeneous line bundle \(L_{\chi}\) associated by the character \(\chi\) to the principal \(H\)-bundle.
In a previous paper [Math. Scand. 105 , 66–84 (2009; Zbl 1183.22006)], the author has calculated the Berezin symbols \(S_{\lambda}(\pi_{\lambda})\), \(g\in G\), and \(S_{\lambda}(d\pi_{\lambda}(X))\), \(X\in\mathfrak{g}\). In the paper under review, the author calculates the symbol \(W_{\lambda}(d\pi_{\lambda})\), where \(W_{\lambda}\) is the Stratonovich-Weyl correspondence for \((G,\pi_{\lambda},M)\) [cf., H. Figueroa, J. M. Gracia-Bondía and J. C. Várilly, J. Math. Phys. 31, No. 11, 2664–2671 (1990; Zbl 0753.43002)] using the polar decomposition of the Berezin calculus \(S\), \(W = B^{-1/2}S\), where \(B=SS^{\star}\) is the Berezin transform.
The result is expressed as \(W_{\lambda}(d\pi_{\lambda}(X))=a_{\lambda}S_{\lambda} (d\pi_{\lambda}(X))\), where \(a_{\lambda}\) is a constant. The author determines the constant \(a_{\lambda}\) in the case of a compact complex Grassmann manifold. Also the behavior of \(a_{m\lambda}\) and \(W_{m\lambda}(d\pi_{m\lambda}(X))\) as \(m\rightarrow\infty\) have been investigated, computing a Hua type integral on the Grassmannian.


22E46 Semisimple Lie groups and their representations
81S10 Geometry and quantization, symplectic methods
46E22 Hilbert spaces with reproducing kernels (= (proper) functional Hilbert spaces, including de Branges-Rovnyak and other structured spaces)
32M10 Homogeneous complex manifolds
43A77 Harmonic analysis on general compact groups
Full Text: DOI


[1] Ali, S.T., Englis, M.: Quantization methods: a guide for physicists and analysts, Rev. Math. Phys., 17 (2005), 391–490 · Zbl 1075.81038 · doi:10.1142/S0129055X05002376
[2] Arazy, J., Upmeier, H.: Weyl Calculus for Complex and Real Symmetric Domains. Harmonic analysis on complex homogeneous domains and Lie groups (Rome, 2001), Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 13 (2002), no 3–4, 165–181 · Zbl 1150.43302
[3] Arazy, J., Upmeier, H.: Invariant symbolic calculi and eigenvalues of invariant operators on symmeric domains. Function spaces, interpolation theory and related topics (Lund, 2000). Berlin: de Gruyter (2002), 151–211 · Zbl 1027.32020
[4] Arazy, J., Upmeier, H.: Covariant Symbolic Calculi on Real SymmetricDomains. Singular integral operators, factorization and applications, 1–27, Oper. Theory Adv. Appl., 142. Basel: Birkhäuser (2003) · Zbl 1034.46071
[5] Arnal, D., Cahen, M., Gutt, S.:, Representations of compact Lie groups and quantization by deformation, Acad. R. Belg. Bull. Cl. Sc., 3e série LXXIV, 45 (1988), 123–141 · Zbl 0681.58016
[6] Bekka, M.B., De la Harpe, P.: Irreducibility of unitary group representations and reproducing kernels Hilbert spaces, Expo. Math., 21 (2003), 115–149 · Zbl 1037.22009
[7] Berceanu, S., Boutet de Monvel, L.: Linear dynamical systems, coherent state manifolds, flows and matrix Riccati equation, J. Math. Phys., 34 (1993), 2353–2371 · Zbl 0778.58020 · doi:10.1063/1.530121
[8] Berezin, F.A.: Quantization, Math. USSR Izv., 8 (1974), 1109–1165 · Zbl 0312.53049 · doi:10.1070/IM1974v008n05ABEH002140
[9] Berezin, F.A.: Quantization in complex symmetric domains, Math. USSR Izv., 9 (1975), 341–379 · Zbl 0324.53049 · doi:10.1070/IM1975v009n02ABEH001480
[10] Cahen, B.: Berezin quantization on generalized flag manifolds, Math. Scand., 105 (2009), 66–84 · Zbl 1183.22006
[11] Cahen, B.: Contractions of semisimple Lie groups via Berezin quantization, Illinois J. Math., 53 (2009), 265–288 · Zbl 1185.22008
[12] Cahen, M., Gutt, S., Rawnsley, J.: Quantization on Kähler manifolds I, Geometric interpretation of Berezin quantization, J. Geom. Phys., 7 (1990), 45–62 · Zbl 0736.53056 · doi:10.1016/0393-0440(90)90007-P
[13] Cariñena, J.F., Gracia-Bondìa, J.M., Vàrilly, J.C.: Relativistic quantum kinematics in the Moyal representation, J. Phys. A: Math. Gen., 23 (1990), 901–933 · Zbl 0706.60108 · doi:10.1088/0305-4470/23/6/015
[14] Davidson, M., Olafsson, G., Zhang, G: Laplace and Segal-Bargmann transforms on Hermitian symmetric spaces and orthogonal polynomials, J. Funct. Anal., 204 (2003), 157–195 · Zbl 1035.32014 · doi:10.1016/S0022-1236(03)00101-0
[15] Figueroa, H, Gracia-Bondìa, J.M., Vàrilly, J.C.:Moyal quantization with compact symmetry groups and noncommutative analysis, J. Math. Phys., 31 (1990), 2664–2671 · Zbl 0753.43002 · doi:10.1063/1.528967
[16] Folland, B.: Harmonic Analysis in Phase Space. Princeton Univ. Press (1989) · Zbl 0682.43001
[17] Gracia-Bondìa, J.M.: GeneralizedMoyal quantization on homogeneoussymplectic spaces. In: Deformation theory and quantum groups with applications to mathematical physics (Amherst, MA, 1990). Contemp. Math., 134. Providence, RI: Amer. Math. Soc. (1992), 93–114
[18] Gracia-Bondìa, J.M., Vàrilly, J.C.: The Moyal Representation for Spin, Ann. Physics, 190 (1989), 107–148 · Zbl 0652.46028 · doi:10.1016/0003-4916(89)90262-5
[19] Helgason, S.: Differential Geometry, Lie Groups and Symmetric Spaces. (Graduate Studies in Mathematics, Vol. 34). Providence, RI: Amer. Math. Soc. (2001) · Zbl 0993.53002
[20] Hua, L.K.: Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains. (Trans. Math. Monographs, Vol. 6). Providence, RI: Amer. Math. Soc. (1963) · Zbl 0112.07402
[21] Kirillov, A.A.: Lectures on the Orbit Method. (Graduate Studies in Mathematics Vol. 64). Providence, RI: Amer. Math. Soc. (2004)
[22] Neeb, K-H.: Holomorphy and Convexity in Lie Theory. (de Gruyter Expositions in Mathematics, Vol. 28). Berlin, New-York: Walter de Gruyter (2000) · Zbl 0964.22004
[23] Nomura, T.: Berezin Transforms and Group representations, J. Lie Theory, 8 (1998), 433–440 · Zbl 0919.43008
[24] Ørsted, B., Zhang, G.: Weyl Quantization and Tensor Products of Fock and Bergman Spaces, Indiana Univ. Math. J., 43 (1994), 551–583 · Zbl 0805.46053 · doi:10.1512/iumj.1994.43.43023
[25] Stratonovich, R.L.: On distributions in representation space, Soviet Physics. JETP, 4 (1957), 891–898 · Zbl 0082.19302
[26] Unterberger, A., Upmeier, H.: Berezin transform and invariant differential operators, Commun.Math. Phys., 164 (1994), 563–597 · Zbl 0843.32019 · doi:10.1007/BF02101491
[27] Varadarajan, V.S.: Lie groups, Lie algebras and Their Representations. (Graduate Texts in Mathematics, Vol. 102). New-York: Springer-Verlag (1984) · Zbl 0955.22500
[28] Wallach, N.R.: Harmonic Analysis on Homogeneous Spaces. (Pure and Applied Mathematics, Vol. 19). New-York: Marcel Dekker (1973) · Zbl 0265.22022
[29] Wildberger, N.J.: On the Fourier transform of a compact semisimple Lie group, J.Austral. Math. Soc. A, 56 (1994), 64–116 · Zbl 0842.22015 · doi:10.1017/S1446788700034741
[30] Zhang, G.: Berezin transform on compact Hermitian symmetric spaces, Manuscripta Math., 97 (1998), 371–388 · Zbl 0920.22008 · doi:10.1007/s002290050109
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.