×

zbMATH — the first resource for mathematics

Mittag-Leffler functions and their applications. (English) Zbl 1218.33021
Summary: Motivated essentially by the success of the applications of the Mittag-Leffler functions in many areas of science and engineering, the authors present, in a unified manner, a detailed account or rather a brief survey of the Mittag-Leffler function, generalized Mittag-Leffler functions, Mittag-Leffler type functions, and their interesting and useful properties. Applications of G. M. Mittag-Leffler functions in certain areas of physical and applied sciences are also demonstrated. During the last two decades this function has come into prominence after about nine decades of its discovery by a Swedish Mathematician Mittag-Leffler, due to the vast potential of its applications in solving the problems of physical, biological, engineering, and earth sciences, and so forth. In this survey paper, nearly all types of Mittag-Leffler type functions existing in the literature are presented. An attempt is made to present nearly an exhaustive list of references concerning the Mittag-Leffler functions to make the reader familiar with the present trend of research in Mittag-Leffler type functions and their applications.

MSC:
33E12 Mittag-Leffler functions and generalizations
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Functions, vol. 3, McGraw-Hill, New York, NY, USA, 1955. · Zbl 0064.06302
[2] G. M. Mittag-Leffler, “Une generalisation de l’integrale de Laplace-Abel,” Comptes Rendus de l’Académie des Sciences Série II, vol. 137, pp. 537-539, 1903. · JFM 34.0434.02
[3] G. M. Mittag-Leffler, “Sur la nouvelle fonction E\alpha (x),” Comptes Rendus de l’Académie des Sciences, vol. 137, pp. 554-558, 1903. · JFM 34.0435.01
[4] G. Mittag-Leffler, “Mittag-Leffler, Sur la representation analytiqie d’une fonction monogene (cinquieme note),” Acta Mathematica, vol. 29, no. 1, pp. 101-181, 1905. · JFM 36.0469.02 · doi:10.1007/BF02403200
[5] A. Wiman, “Über den fundamental satz in der theorie der funcktionen, E\alpha (x),” Acta Mathematica, vol. 29, pp. 191-201, 1905. · JFM 36.0471.01
[6] A. Wiman, “Über die Nullstellun der Funktionen E\alpha (x),” Acta Mathematica, vol. 29, pp. 217-234, 1905. · JFM 36.0472.01
[7] R. P. Agarwai, “A propos d’une note de M. Pierre Humbert,” Comptes Rendus de l’Académie des Sciences, vol. 236, pp. 203-2032, 1953. · Zbl 0051.30801
[8] P. Humbert, “Quelques resultants retifs a la fonction de Mittag-Leffler,” Comptes Rendus de l’Académie des Sciences, vol. 236, pp. 1467-1468, 1953. · Zbl 0050.10404
[9] P. Humbert and R. P. Agarwal, “Sur la fonction de Mittag-Leffler et quelques unes de ses generalizations,” Bulletin of Science and Mathematics Series II, vol. 77, pp. 180-185, 1953. · Zbl 0052.06402
[10] M. M. Dzherbashyan, Integral Transforms and Representations of Functions in the Complex Plane, Nauka, Moscow, Russia, 1966.
[11] K. R. Lang, “Astrophysical Formulae,” in Gas Processes and High-Energy Astrophysics, vol. 1, Springer, New York, NY, USA, 3rd edition, 1999. · Zbl 0957.85002
[12] K. R. Lang, “Astrophysical formulae,” in Space, Time, Matter and Cosmology, vol. 2, Springer, New York, NY, USA, 1999. · Zbl 0957.85002
[13] R. Hilfer, “Fractional diffusion based on Riemann-Liouville fractional derivatives,” Journal of Physical Chemistry B, vol. 104, no. 3, pp. 914-924, 2000.
[14] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000. · Zbl 0998.26002
[15] R. K. Saxena, “Certain properties of generalized Mittag-Leffler function,” in Proceedings of the 3rd Annual Conference of the Society for Special Functions and Their Applications, pp. 77-81, Chennai, India, 2002. · Zbl 1081.33035
[16] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, New York, NY, USA, 1993. · Zbl 0818.26003
[17] E. Hille and J. D. Tamarkin, “On the theory of linear integral equations,” Annals of Mathematics, vol. 31, pp. 479-528, 1930. · JFM 56.0337.01
[18] G. W. S. Blair, “Psychorheology: links between the past and the present,” Journal of Texture Studies, vol. 5, pp. 3-12, 1974.
[19] P. J. Torvik and R. L. Bagley, “On the appearance of the fractional derivative in the behaviour of real materials,” Journal of Applied Mechanics, Transactions ASME, vol. 51, no. 2, pp. 294-298, 1984. · Zbl 1203.74022 · doi:10.1115/1.3167615
[20] M. Caputo and F. Mainardi, “Linear models of dissipation in anelastic solids,” La Rivista del Nuovo Cimento, vol. 1, no. 2, pp. 161-198, 1971. · doi:10.1007/BF02820620
[21] R. Gorenflo and S. Vessella, Abel Integral Equations: Analysis and Applications, vol. 1461, Springer, Berlin, Germany, 1991. · Zbl 0717.45002 · doi:10.1007/BFb0084665
[22] R. Gorenflo and R. Rutman, “On ultraslow and intermediate processes,” in Transform Methods and Special Functions, Sofia, P. Rusev, I. Dimovski, and V. Kiryakova, Eds., pp. 171-183, Science Culture Technology, Singapore, 1995. · Zbl 0923.34005
[23] A. A. Kilbas and M. Saigo, “On solutions of integral equations of Abel-Volterra type,” Differential and Integral Equations, vol. 8, pp. 933-1011, 1995. · Zbl 0823.45002
[24] R. Gorenflo and Y. Luchko, “Operational methods for solving generalized Abel equations of second kind,” Integral Transforms and Specisl Functiond, vol. 5, pp. 47-58, 1997. · Zbl 0887.44003 · doi:10.1080/10652469708819125
[25] R. Gorenflo and F. Mainardi, “Fractional oscillations and Mittag-Leffler functions,” Tech. Rep. 1-14/96, Free University of Berlin, Berlin, Germany, 1996. · Zbl 0916.34011
[26] R. Gorenflo and F. Mainardi, “Fractional calculus: integral and differential equations of fractional order,” in Fractals and Fractional Calculus in Continuum Mechanics, A. Carpinteri and F. Mainardi, Eds., pp. 223-276, Springer, Berlin, Germany, 1997.
[27] F. Mainardi and R. Gorenflo, “The Mittag-Leffler function in the Riemann-Liouville fractional calculus,” in Boundary Value Problems, Special Functions and Fractional Calculus, A. A. Kilbas, Ed., pp. 215-225, Byelorussian State University, Minsk, Belarus, 1996.
[28] F. Mainardi and R. Gorenflo, “On Mittag-Leffler-type functions in fractional evolution processes,” Journal of Computational and Applied Mathematics, vol. 118, no. 1-2, pp. 283-299, 2000. · Zbl 0970.45005 · doi:10.1016/S0377-0427(00)00294-6
[29] R. Gorenflo, Y. Luchko, and S. V. Rogosin, “Mittag-Leffler type functions, notes on growth properties and distribution of zeros,” Tech. Rep. A04-97, Freie Universität Berlin, Berlin, Germany, 1997.
[30] R. Gorenflo, A. A. Kilbas, and S. V. Rogosin, “On the generalized Mittag-Leffler type function,” Integral Transform Special Functions, vol. 7, no. 3-4, pp. 215-224, 1998. · Zbl 0935.33012 · doi:10.1080/10652469808819200
[31] Y. U. Luchko, “Operational method in fractional calculus,” Fractional Calculus & Applied Analisys, vol. 2, pp. 463-488, 1999. · Zbl 1030.26009
[32] Y. U. F. Luchko and H. M. Srivastava, “The exact solution of certain differential equations of fractional order by using operational calculus,” Computers and Mathematics with Applications, vol. 29, no. 8, pp. 73-85, 1995. · Zbl 0824.44011 · doi:10.1016/0898-1221(95)00031-S
[33] A. A. Kilbas, M. Saigo, and R. K. Saxena, “Solution of Volterra integro-differential equations with generalized Mittag-Leffler function in the kernels,” Journal of Integral Equations and Applications, vol. 14, no. 4, pp. 377-386, 2002. · Zbl 1041.45011 · doi:10.1216/jiea/1181074929
[34] A. A. Kilbas, M. Saigo, and R. K. Saxena, “Generalized Mittag-Leffler function and generalized fractional calculus operators,” Integral Transforms and Special Functions, vol. 15, no. 1, pp. 31-49, 2004. · Zbl 1047.33011 · doi:10.1080/10652460310001600717
[35] R. K. Saxena and M. Saigo, “Certain properties of fractional calculus operators associated with generalized Wright function,” Fractional Calculus & Applied Analisys, vol. 6, pp. 141-154, 2005. · Zbl 1144.26010 · eudml:11283
[36] V. Kiryakova, “Some special functions related to fractional calculus and fractional non-integer order control systems and equations,” Facta Universitatis. Series: Mechanics, Automatic Control and Robotics, vol. 7, no. 1, pp. 79-98, 2008.
[37] V. S. Kiryakova, “Special functions of fractional calculus: recent list, results, applications,” in Proceedings of the 3rd IFC Workshop: Fractional Differentiation and Its Applications (FDA ’08), pp. 1-23, Cankaya University, Ankara, Turkey, November 2008.
[38] R. K. Saxena, S. L. Kalla, and V. S. Kiryakova, “Relations connecting multiindex Mittag-Leffler functions and Riemann-Liouville fractional calculus,” Algebras, Groups and Geometries, vol. 20, pp. 363-385, 2003. · Zbl 1050.33016
[39] R. K. Saxena, A. M. Mathai, and H. J. Haubold, “On fractional kinetic equations,” Astrophysics and Space Science, vol. 282, no. 1, pp. 281-287, 2002. · doi:10.1023/A:1021175108964
[40] R. K. Saxena, A. M. Mathai, and H. J. Haubold, “On generalized fractional kinetic equations,” Physica A, vol. 344, no. 3-4, pp. 657-664, 2004. · doi:10.1016/j.physa.2004.06.048
[41] R. K. Saxena, A. M. Mathai , and H. J. Haubold, “Unified fractional kinetic equations and a fractional diffusion equation,” Astrophysics & Space Science, vol. 290, pp. 241-245, 2004. · Zbl 1115.82300
[42] R. K. Saxena, A. M. Mathai, and H. J. Haubold, “Astrophysical thermonuclear functions for Boltzmann-Gibbs statistics and Tsallis statistics,” Physica A, vol. 344, no. 3-4, pp. 649-656, 2004. · doi:10.1016/j.physa.2004.06.047
[43] R. K. Saxena, A. M. Mathai, and H. J. Haubold, “Fractional reaction-diffusion equations,” Astrophysics and Space Science, vol. 305, no. 3, pp. 289-296, 2006. · Zbl 1105.35307 · doi:10.1007/s10509-006-9189-6
[44] R. K. Saxena and S. L. Kalla, “On the solutions of certain fractional kinetic equations,” Applied Mathematics and Computation, vol. 199, no. 2, pp. 504-511, 2008. · Zbl 1166.76051 · doi:10.1016/j.amc.2007.10.005
[45] A. M. Mathai, R. K. Saxena, and H. J. Haubold, “A certain class of Laplace transforms with application in reaction and reaction-diffusion equations,” Astrophysics & Space Science, vol. 305, pp. 283-288, 2006. · Zbl 1105.35301 · doi:10.1007/s10509-006-9188-7
[46] H. J. Haubold and A. M. Mathai, “The fractional kinetic equation and thermonuclear functions,” Astrophysics and Space Science, vol. 273, no. 1-4, pp. 53-63, 2000. · Zbl 1034.82048 · doi:10.1023/A:1002695807970
[47] H. J. Haubold, A. M. Mathai, and R. K Saxena, “Solution of fractional reaction-diffusion equations in terms of the H-function,” Bulletin of the Astronomical Society of India, vol. 35, pp. 381-689, 2007.
[48] H. M. Srivastava and R. K. Saxena, “Operators of fractional integration and their applications,” Applied Mathematics and Computation, vol. 118, no. 1, pp. 1-52, 2001. · Zbl 1022.26012 · doi:10.1016/S0096-3003(99)00208-8
[49] M. N. Berberan-Santos, “Relation between the inverse Laplace transforms of I(t\beta ) and I(t): application to the Mittag-Leffler and asymptotic inverse power law relaxation functions,” Journal of Mathematical Chemistry, vol. 38, no. 2, pp. 265-270, 2005. · Zbl 1217.44003 · doi:10.1007/s10910-005-5412-x
[50] H. Pollard, “The completely monotonic character of the Mittag-Leffler function E\alpha ( - x),” Bulletin of the American Mathematical Society, vol. 54, pp. 1115-116, 1948. · Zbl 0033.35902 · doi:10.1090/S0002-9904-1948-09132-7
[51] R. Gorenflo, Y. Luchko, and H. M. Srivastava, “Operational method for solving Gauss’ hypergeometric function as a kernel,” International Journal of Mathematics and Mathematical Sciences, vol. 6, pp. 179-200, 1997. · Zbl 0889.45005
[52] R. Gorenflo, J. Loutschko, and Y. Luchko, “Computation of the Mittag-Leffler function and its derivatives,” Fractional Calculus & Applied Analisys, vol. 5, no. 4, pp. 491-518, 2002. · Zbl 1027.33016
[53] I. S. Gupta and L. Debnath, “Some properties of the Mittag-Leffler functions,” Integral Transforms and Special Functions, vol. 18, no. 5, pp. 329-336, 2007. · Zbl 1118.33011 · doi:10.1080/10652460601090216
[54] A. M. Mathai and R. K. Saxena, The H-Function with Applications in Statistics and Other Disciplines, John Wiley & Sons, New York, NY, USA, 1978. · Zbl 0382.33001
[55] A. P. Prudnikov, Y. U. Brychkov, and O. I. Mariche, Integrals and Series, vol. 3 of More Special Functions, Gordon and Breach, New York, NY, USA, 1990. · Zbl 0967.00503
[56] A. A. Kilbas and M. Saigo, H-Transforms: Theory and Applications, Analytic Methods and Special Functions, Chapman & Hall, CRC Press, Boca Raton, Fla, USA, 2004. · Zbl 1056.44001
[57] E. M. Wright, “The asymptotic expansion of the generalized hypergeometric function,” Journal London Mathematical Society, vol. 10, pp. 286-293, 1935. · Zbl 0013.02104 · doi:10.1112/jlms/s1-10.40.286
[58] E. M. Wright, “The asymptotic expansion of the integral functions defined by Taylor series,” Philosophical Transactions of the Royal Society A, vol. 238, pp. 423-451, 1940. · Zbl 0023.14002 · doi:10.1098/rsta.1940.0002
[59] A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Functions, vol. 1, McGraw-Hill, New York, NY, USA, 1953. · Zbl 0052.29502
[60] A. A. Kilbas, M. Saigo, and J. J. Trujillo, “On the generalized Wright function,” Fractional Calculus & Applied Analisys, vol. 5, no. 4, pp. 437-460, 2002. · Zbl 1027.33015
[61] E. M. Wright, “On the coefficients of power series having exponential singularities,” Journal London Mathematical Society, vol. 8, pp. 71-79, 1933. · Zbl 0006.19704 · doi:10.1112/jlms/s1-8.1.71
[62] V .S. Kiryakova, Generalized Fractional Calculus and Applications, vol. 301 of Pitman Research Notes in Mathematics, Longman, Harlow, UK; John Wiley & Sons, New York, NY, USA, 1994. · Zbl 0882.26003
[63] F. Mainardi, “Fractional calculus: some basic problems in continuum and statistical mechanics,” in Fractals and Fractional Calculus in Continuum Mechanics, A. Carpinteri and F. Mainardi, Eds., pp. 291-348, Springer, Wien, Germany, 1997. · Zbl 0917.73004
[64] E. Buckwar and Y. Luchko, “Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations,” Journal of Mathematical Analysis and Applications, vol. 227, no. 1, pp. 81-97, 1998. · Zbl 0932.58038 · doi:10.1006/jmaa.1998.6078
[65] Y. U. Luchko and R. Gorenflo, “Scale-invariant solutins of a partial differential equation of fractional order,” Fractional Calculus & Applied Analisys, vol. 1, pp. 63-78, 1998. · Zbl 0940.45001
[66] A. A. Kilbas, “Fractional calculus of the generalized Wright function,” Fractional Calculus & Applied Analisys, vol. 8, no. 2, pp. 113-126, 2005. · Zbl 1144.26008
[67] T. R. Prabhakar, “A singular integral equation with a generalized Mittag-Leffler function in the kernel,” Yokohama Mathematical Journal, vol. 19, pp. 7-15, 1971. · Zbl 0221.45003
[68] E. M. Wright, “The asymptotic expansion of the generalized Bessel function,” Proceedings London Mathematical Society, vol. 38, pp. 257-270, 1934. · Zbl 0010.21103 · doi:10.1112/plms/s2-38.1.257
[69] Y. U. Luchko and S. B. Yaskubovich, “Operational calculus for the generalized fractional differential operator and applications,” Mathematica Balkanica-New Series, vol. 4, no. 2, pp. 119-130, 1990. · Zbl 0830.44004
[70] Y. U. Luchko and S. B. Yakubovich, “An operational method for solving some classes of integro-differential equations,” Differentsial’nye Uravneniya, vol. 30, pp. 269-280, 1994 (Russian). · Zbl 0827.44004
[71] M. A. Al-Bassam and Y. F. Luchko, “On generalized fractional calculus and its application to the solution of integro-differential equations,” Journal of Fractional Calculus, vol. 7, pp. 69-88, 1995. · Zbl 0840.44002
[72] S. B. Hadid and Y. Luchko, “An operational method for solving fractional differential equations of anarbitrary real order,” Pan-American Mathematical Journal, vol. 6, pp. 57-73, 1996. · Zbl 0848.44003
[73] R. Gorenflo, A. Iskenderov, and Y. Luchko, “Mapping between solutions of fractional diffusion wave equations,” Fractional Calculus & Applied Analisys, vol. 3, pp. 75-86, 2000. · Zbl 1033.35161
[74] R. Gorenflo, Y. Luchko, and F. Mainardi, “Wright functions as scale-invariant solutions of the diffusion-wave equation,” Journal of Computational and Applied Mathematics, vol. 118, no. 1-2, pp. 175-191, 2000. · Zbl 0973.35012 · doi:10.1016/S0377-0427(00)00288-0
[75] Y. U. Luchko and R. Gorenflo, “An operational method for solving fractional differential equations with a Caputo derivative,” Acta Mathematica Vietnamica, vol. 24, pp. 207-234, 1999. · Zbl 0931.44003
[76] A. A. Kilbas and M. Saigo, “Fractional integrals and derivatives of Mittag-Leffler type function,” Doklady Akademii Nauk Belarusi, vol. 39, no. 4, pp. 22-26, 1995 (Russian).
[77] A. A. Kilbas and M. Saigo, “On mittag-leffler type function, fractional calculus operators and solutions of integral equations,” Integral Transforms and Special Functions, vol. 4, no. 4, pp. 355-370, 1996. · Zbl 0876.26007 · doi:10.1080/10652469608819121
[78] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, New York, NY, USA, 1993. · Zbl 0789.26002
[79] A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Tables of Integral Transforms, vol. 2, McGraw-Hill, New York, NY, USA, 1954. · Zbl 0055.36401
[80] K. B. Oldham and J. Spanier, The Fractional Calculus, Academic Press, New York, NY, USA, 1974. · Zbl 0292.26011
[81] M. Caputo, Elasticitá e Dissipazione, Zanichelli, Bologna, Italy, 1969.
[82] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, Calif, USA, 1999. · Zbl 0924.34008
[83] R. Metzler and J. Klafter, “The random walk’s guide to anomalous diffusion: a fractional dynamics approach,” Physics Report, vol. 339, no. 1, pp. 1-77, 2000. · Zbl 0984.82032 · doi:10.1016/S0370-1573(00)00070-3
[84] A. Compte, “Stochastic foundations of fractional dynamics,” Physical Review E, vol. 53, no. 4, pp. 4191-4193, 1996.
[85] B. N. Al-Saqabi and VU. K. Tuan, “Solution of a fractional differintegral equation,” Integral Transforms and Special Functions, vol. 4, no. 4, pp. 321-326, 1996. · Zbl 0864.34002 · doi:10.1080/10652469608819118
[86] V. S. Kiryakova, “Multiple (multiindex) Mittag-Leffler functions and relations to generalized fractional calculus,” Journal of Computational and Applied Mathematics, vol. 118, no. 1-2, pp. 241-259, 2000. · Zbl 0966.33011 · doi:10.1016/S0377-0427(00)00292-2
[87] M. M. Dzherbashyan, “On the integral transformations generated by the generalzied Mittag-Leffler fuction,” Izdatel’stvo Akademii Nauk Armyanskoi SSR, vol. 13, no. 3, pp. 21-63, 1960 (Russian).
[88] V. S. Kiryakova, “Multiindex Mittag-Leffler functions related to Gelfond-Leontiev operators and Laplace type integral transforms,” Fractional Calculus & Applied Analisys, vol. 2, pp. 4445-462, 1999. · Zbl 1111.33300
[89] S. Sharma, “Fractional differentiation and fractional integration of the M-series,” Fractional Calculus & Applied Analisys, vol. 11, pp. 187-191, 2008. · Zbl 1153.26303
[90] R. K. Saxena, “A remark on a paper on M-series,” Fractional Calculus & Applied Analisys, vol. 12, no. 1, pp. 109-110, 2009. · Zbl 1177.26013
[91] R. N. Pillai, “On Mittag-Leffler functions and related distributions,” Annals of the Institute of Statistical Mathematics, vol. 42, no. 1, pp. 157-161, 1990. · Zbl 0714.60009 · doi:10.1007/BF00050786
[92] A. M. Mathai and H. J. Haubold, Special Functions for Applied Scientists, Springer, New York, NY, USA, 2008. · Zbl 1151.33001
[93] K. Jayakumar, “Mittag-Leffler process,” Mathematical and Computer Modelling, vol. 37, no. 12-13, pp. 1427-1434, 2003. · Zbl 1045.62087 · doi:10.1016/S0895-7177(03)90050-1
[94] K. Jayakumar and R. P. Suresh, “Mittag-Leffler distribution,” Journal of the Indian Society of Probability and Statistics, vol. 7, pp. 51-71, 2003.
[95] A. M. Mathai, A Handbook of Generalized Special Functions for Statistical and Physical Sciences, Clarendon Press, Oxford, UK, 1993. · Zbl 0770.33001
[96] G. D. Lin, “On the Mittag-Leffler distribution,” Journal of Statistical Planning and Inference, vol. 74, pp. 1-9, 1998. · Zbl 0935.60002
[97] A. M. Mathai, “A pathway to matrix-variate gamma and normal densities,” Linear Algebra and Its Applications, vol. 396, no. 1-3, pp. 317-328, 2005. · Zbl 1084.62044 · doi:10.1016/j.laa.2004.09.022
[98] R. N. Pillai and K. Jayakumar, “Discrete Mittag-Leffler distributions,” Statistics and Probability Letters, vol. 23, no. 3, pp. 271-274, 1995. · Zbl 0829.60010 · doi:10.1016/0167-7152(94)00124-Q
[99] A. G. Pakes, “Mixture representations for symmetric generalized Linnik laws,” Statistics and Probability Letters, vol. 37, no. 3, pp. 213-221, 1998. · Zbl 1246.60024
[100] F. Mainardi and G. Pagnini, “Mellin-Barnes integrals for stable distributions and their convolutions,” Fractional Calculus & Applied Analysis, vol. 11, no. 4, pp. 443-456, 2008. · Zbl 1175.26017
[101] S. C. Lim and L. P. Teo, “Analytic and asymptotic properties of multivariate generalized Linnik’s probability densities,” Journal of Fourier Analysis and Applications, pp. 1-33, 2009. · Zbl 1202.60028 · doi:10.1007/s00041-009-9097-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.