Introduction to the non-perturbative renormalization group and its recent applications. (English) Zbl 1219.81199

Summary: We introduce the basic ideas and the framework of the non-perturbative renormalization group particularly for pedestrians using elementary examples. First we briefly review the history of the renormalization theory and the renormalization group. We will make it clear that the modern renormalization theory is constructed on the idea of the renormalization group and it is quite a new type of theory in physics. Then we derive the exact non-perturbative renormalization group equation and set up its systematic approximation method. The lowest order approximation called the local potential approximation is applied to scalar theories with the ferromagnetic transition and quantum mechanics with tunneling. We compare our results with other methods, and will show that the non-perturbative renormalization group method is promising since it gives fairly good results already in the lowest order approximation and it does not suffer any divergent series expansion. As a typical application in high energy physics, we analyze the dynamical chiral symmetry breaking in gauge theories and investigate the chiral phase structures. Our new method improves results by the ladder Schwinger-Dyson equation so that the physical results might be less gauge dependent.


81T17 Renormalization group methods applied to problems in quantum field theory
Full Text: DOI


[1] DOI: 10.1143/PTPS.131.129
[2] DOI: 10.1016/0370-1573(74)90023-4
[3] DOI: 10.1103/PhysRevA.8.401
[4] DOI: 10.1016/0550-3213(84)90287-6
[5] DOI: 10.1016/0370-2693(93)90726-X
[6] DOI: 10.1143/PTP.102.181
[7] DOI: 10.1143/PTP.95.409
[8] DOI: 10.1088/1126-6708/1999/08/007
[9] Butera P., Phys. Rev. 52 pp 6185– (1955)
[10] DOI: 10.1016/0370-2693(94)01005-6
[11] Hazenfratz A., Nucl. Phys. 270 pp 269– (1986)
[12] DOI: 10.1016/S0550-3213(99)00263-1 · Zbl 0958.81013
[13] DOI: 10.1103/PhysRev.122.345
[14] Kondo K.-I., Phys. Rev. 39 pp 2430– (1989)
[15] DOI: 10.1143/PTP.81.866
[16] DOI: 10.1016/0550-3213(91)90089-G
[17] Higashijima K., Phys. Rev. 29 pp 1228– (1984)
[18] DOI: 10.1016/0370-2693(91)91071-3
[19] Cornwall J. M., Phys. Rev. 10 pp 2428– (1974)
[20] Jungnickel D. U., Phys. Rev. 59 pp 34010– (1999)
[21] DOI: 10.1143/PTP.102.1163
[22] DOI: 10.1143/PTP.103.393
[23] DOI: 10.1143/PTP.102.1151
[24] Aoki K.-I., Phys. Rev. 61 pp 045008– (2000)
[25] DOI: 10.1143/PTP.97.479
[26] DOI: 10.1016/0370-2693(95)00025-G
[27] DOI: 10.1143/PTP.99.451
[28] DOI: 10.1103/PhysRevLett.80.4119
[29] DOI: 10.1143/PTP.103.815
[30] Y., Phys. Lett. 479 pp 336– (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.