×

Exact closed-form solutions of the Dirac equation with a scalar exponential potential. (English) Zbl 1222.81171

Summary: The problem of a fermion subject to a general scalar potential in a two-dimensional world for nonzero eigenenergies is mapped into a Sturm-Liouville problem for the upper component of the Dirac spinor. In the specific circumstance of an exponential potential, we have an effective Morse potential which reveals itself as an essentially relativistic problem. Exact bound solutions are found in closed form for this problem. The behaviour of the upper and lower components of the Dirac spinor is discussed in detail, particularly the existence of zero modes.

MSC:

81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Coleman, S.; Jackiw, R.; Susskind, L., Ann. Phys. (N.Y.), 93, 267 (1975)
[2] Coleman, S., Ann. Phys. (N.Y.), 101, 239 (1976)
[3] Fröhlich, J.; Seiler, E., Helv. Phys. Acta, 49, 889 (1976)
[4] Capri, A. Z.; Ferrari, R., Can. J. Phys., 63, 1029 (1985)
[5] Galić, H., Am. J. Phys., 56, 312 (1988)
[6] ’t Hooft, G., Nucl. Phys. B, 75, 461 (1974)
[7] Kogut, J.; Susskind, L., Phys. Rev. D, 9, 3501 (1974)
[8] Bhalerao, R. S.; Ram, B., Am. J. Phys., 69, 817 (2001)
[9] de Castro, A. S., Am. J. Phys., 70, 450 (2002)
[10] Cavalcanti, R. M., Am. J. Phys., 70, 451 (2002)
[11] Hiller, J. R., Am. J. Phys., 70, 522 (2002)
[12] de Castro, A. S., Phys. Lett. A, 305, 100 (2002)
[13] Nogami, Y.; Toyama, F. M.; van Dijk, W., Am. J. Phys., 71, 950 (2003)
[14] Spector, H. N.; Lee, J., Am. J. Phys., 53, 248 (1985)
[15] Moss, R. E., Am. J. Phys., 55, 397 (1987)
[16] Ho, C.-L.; Khalilov, V. R., Phys. Rev. D, 63, 027701 (2001)
[17] de Castro, A. S., Phys. Lett. A, 328, 289 (2004)
[18] Flügge, S., Practical Quantum Mechanics (1999), Springer-Verlag: Springer-Verlag Berlin · Zbl 0934.81001
[19] ter Haar, D., Phys. Rev., 70, 222 (1946)
[20] Brueckner, K. A., Phys. Rev., 103, 172 (1956)
[21] Bernard, V.; Mahaux, C., Phys. Rev. C, 23, 888 (1981)
[22] Morse, P. M., Phys. Rev., 34, 57 (1929)
[23] Morse, P. M.; Fisk, J. B.; Schiff, L. I., Phys. Rev., 50, 748 (1936)
[24] ter Haar, D., Problems in Quantum Mechanics (1975), Pion: Pion London
[25] Nieto, M. M.; Simmons, L. M., Phys. Rev. A, 19, 438 (1979)
[26] Ahmed, Z., Phys. Lett. A, 290, 19 (2001)
[27] Gusynin, V.; Miransky, V.; Shovkovy, I., Phys. Rev. Lett., 73, 3499 (1994)
[28] Dunne, G.; Hall, T., Phys. Rev. D, 53, 2220 (1996)
[29] Cangemi, D.; D’Hoker, E.; Dunne, G., Phys. Rev. D, 52, R3163 (1995)
[30] Dunne, G.; Hall, T., Phys. Lett. B, 419, 322 (1998)
[31] Niemi, A.; Semenoff, G., Phys. Rep., 135, 99 (1986)
[32] Aitchison, I. J.; Dunne, G., Phys. Rev. Lett., 86, 1690 (2001)
[33] Dunne, G.; Rao, K., Phys. Rev. D, 67, 045013 (2003)
[34] Thaller, B., The Dirac Equation (1992), Springer-Verlag: Springer-Verlag Berlin · Zbl 0881.47021
[35] Coutinho, F. A.B.; Nogami, Y., Phys. Lett. A, 124, 211 (1987)
[36] Coutinho, F. A.B.; Nogami, Y.; Toyama, F. M., Am. J. Phys., 56, 904 (1988)
[37] Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions (1965), Dover: Dover Toronto · Zbl 0515.33001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.