Romanovski, Valery G.; Prešern, Mateja An approach to solving systems of polynomials via modular arithmetics with applications. (English) Zbl 1225.13029 J. Comput. Appl. Math. 236, No. 2, 196-208 (2011). Summary: The objective of this paper is twofold. First, we describe a method to solve large systems of polynomial equations using modular arithmetics. Then, we apply the approach to the study of the problem of linearizability for a quadratic system of ordinary differential equations. Cited in 31 Documents MSC: 13P25 Applications of commutative algebra (e.g., to statistics, control theory, optimization, etc.) 34C07 Theory of limit cycles of polynomial and analytic vector fields (existence, uniqueness, bounds, Hilbert’s 16th problem and ramifications) for ordinary differential equations 34C20 Transformation and reduction of ordinary differential equations and systems, normal forms 13P15 Solving polynomial systems; resultants 13P10 Gröbner bases; other bases for ideals and modules (e.g., Janet and border bases) 65Y04 Numerical algorithms for computer arithmetic, etc. Keywords:polynomial systems of ODEs; linearizability of ODEs; decomposition of affine varieties Software:SINGULAR; primdec PDF BibTeX XML Cite \textit{V. G. Romanovski} and \textit{M. Prešern}, J. Comput. Appl. Math. 236, No. 2, 196--208 (2011; Zbl 1225.13029) Full Text: DOI References: [1] Buchberger, B., An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal, J. Symbolic Comput., 41, 3-4, 475-511 (2006) · Zbl 1158.01307 [2] Cox, D.; Little, J.; O’Shea, D., Ideals, Varieties, and Algorithms (1992), Springer: Springer New York [3] Arnold, E. A., Modular algorithms for computing Gröbner bases, J. Symbolic Comput., 35, 4, 403-419 (2003) · Zbl 1046.13018 [4] Borosh, I.; Fraenkel, A. S., Exact solutions of linear equations with rational coefficients by congruence techniques, Math. Comp., 20, 107-112 (1966) · Zbl 0137.11002 [5] Ebert, G. L., Some comments on the modular approach to Gröbner-bases, ACM SIGSAM Bull., 17, 28-32 (1983) · Zbl 0527.13001 [6] Gräbe, H.-G., On lucky primes, J. Symbolic Comput., 15, 2, 199-209 (1993) · Zbl 0787.13016 [7] Pauer, F., On lucky ideals for Gröbner basis computations, J. Symbolic Comput., 14, 5, 471-482 (1992) · Zbl 0776.13014 [8] Sasaki, T.; Takeshima, T., A modular method for Gröbner-basis construction over \(Q\) and solving system of algebraic equations, J. Inform. Process., 12, 4, 371-379 (1989) · Zbl 0757.13012 [9] Winkler, F., A \(p\)-adic approach to the computation of Gröbner bases. Computational aspects of commutative algebra, J. Symbolic Comput., 6, 2-3, 287-304 (1988) · Zbl 0669.13009 [10] Edneral, V. F., Computer evaluation of cyclicity in planar cubic system, (Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation (1997), ACM Press: ACM Press New York), 305-309 · Zbl 0916.65078 [11] Gianni, P.; Trager, B.; Zacharias, G., Gröbner bases and primary decomposition of polynomial ideals, J. Symbolic Comput., 6, 2-3, 149-167 (1988) · Zbl 0667.13008 [12] Shimoyama, T.; Yokoyama, K., Localization and primary decomposition of polynomial ideals, J. Symbolic Comput., 22, 247-277 (1996) · Zbl 0874.13022 [13] Wang, D., Elimination Methods (2001), Springer: Springer New York · Zbl 0964.13014 [15] Wang, P. S.; Guy, M. J.T.; Davenport, J. H., P-adic reconstruction of rational numbers, ACM SIGSAM Bull., 16, 2, 2-3 (1982) · Zbl 0489.68032 [16] Romanovski, V. G.; Shafer, D. S., The Center and Cyclicity Problems: A Computational Algebra Approach (2009), Birkhäuser: Birkhäuser Boston · Zbl 1192.34003 [17] Chen, X.; Romanovski, V. G.; Zhang, W., Linearizability conditions of time-reversible quartic systems having homogeneous nonlinearities, Nonlinear Anal., 69, 5-6, 1525-1539 (2008) · Zbl 1159.34025 [18] Chouikha, A. R.; Romanovski, V. G.; Chen, X., Isochronicity of analytic systems via Urabe’s criterion, J. Phys. A, 40, 10, 2313-2327 (2007) · Zbl 1119.34027 [19] Giné, J.; Romanovski, V. G., Linearizability conditions for Lotka-Volterra planar complex cubic systems, J. Phys. A, 42, 22, 225206-225220 (2009) · Zbl 1188.34115 [20] Hu, Z.; Romanovski, V. G.; Shafer, D. S., 1:−3 resonant centers on \(C^2\) with homogeneous cubic nonlinearities, Comput. Math. Appl., 56, 8, 1927-1940 (2008) · Zbl 1165.34334 [21] Romanovski, V. G.; Chen, X.; Hu, Z., Linearizability of linear systems perturbed by fifth degree homogeneous polynomials, J. Phys. A, 40, 22, 5905-5919 (2007) · Zbl 1127.34020 [22] Chen, X.; Zhang, W., Decomposition of algebraic sets and applications to weak centers of cubic systems, J. Comput. Appl. Math., 232, 565-581 (2009) · Zbl 1178.13015 [23] Christopher, C.; Mardešić, P.; Rousseau, C., Normalizable, integrable, and linearizable saddle points for complex quadratic systems in \(C^2\), J. Dyn. Control Syst., 9, 3, 311-363 (2003) · Zbl 1022.37035 [24] Christopher, C.; Rousseau, C., Nondegenerate linearizable centres of complex planar quadratic and symmetric cubic systems in \(C^2\), Publ. Mat., 45, 1, 95-123 (2001) · Zbl 0984.34023 [25] Mardešić, P.; Moser-Jauslin, L.; Rousseau, C., Darboux linearization and isochronous centers with a rational first integral, J. Differential Equations, 134, 2, 216-268 (1997) · Zbl 0881.34041 [26] Wang, Z.; Chen, X.; Zhang, W., Local bifurcations of critical periods in a generalized 2D LV system, Appl. Math. Comput., 214, 1, 17-25 (2009) · Zbl 1175.34052 [27] Fronville, A.; Sadovski, A. P.; Zoła̧dek, H., Solution of the 1:−2 resonant center problem in the quadratic case, Fund. Math., 157, 2-3, 191-207 (1998) · Zbl 0943.34018 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.