Set, Erhan; Sarıkaya, Mehmet Zeki On the generalization of Ostrowski and Grüss type discrete inequalities. (English) Zbl 1228.26029 Comput. Math. Appl. 62, No. 1, 455-461 (2011). Summary: We establish a generalization of discrete inequalities of the Ostrowski and Grüss type involving two functions, using only fairly elementary analysis. Cited in 4 Documents MSC: 26D15 Inequalities for sums, series and integrals 65D30 Numerical integration Keywords:Ostrowski type inequalities; Grüss type inequalities; discrete inequalities × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Mitrinović, D. S.; Pečarić, J. E.; Fink, A. M., Inequalities for Functions and Their Integrals and Derivatives (1994), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht · Zbl 0744.26011 [2] Mitrinović, D. S.; Pečarić, J. E.; Fink, A. M., Classical and New Inequalities in Analysis (1993), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht · Zbl 0771.26009 [3] Anastassiou, G. A., Chebyshev-Grüss type inequalities on \(R^N\) over spherical shells and balls, Appl. Math. Lett., 21, 119-127 (2008) · Zbl 1179.26064 [4] Alomari, M.; Darus, M.; Dragomir, S. S.; Cerone, P., Ostrowski type inequalities for functions whose derivatives are s-convex in the second sense, Appl. Math. Lett., 23, 9, 1071-1076 (2010) · Zbl 1197.26021 [5] Dragomir, S. S., The Ostrowski integral inequality for Lipschitzian mappings and applications, Comput. Math. Appl., 38, 33-37 (1999) · Zbl 0974.26014 [6] Dragomir, S. S., Some integral inequalities of Grüss type, Indian J. Pure Appl. Math., 31, 4, 397-415 (2000) · Zbl 0962.26008 [7] Dragomir, S. S., A Grüss type discrete inequality in inner product spaces and applications, J. Math. Anal. Appl., 250, 494-511 (2000) · Zbl 0964.26012 [8] Dragomir, S. S.; Wang, S., A new inequality of Ostrowski’s type in \(L_1\)-norm and applications to some special means and to some numerical quadrature rules, Tamkang J. Math., 28, 239-244 (1997) · Zbl 0888.26013 [9] Li, X.; Mohapatra, R. N.; Rodriguez, R. S., Grüss-type inequalities, J. Math. Anal. Appl., 267, 434-443 (2002) · Zbl 1007.26016 [10] Özdemir, M. E.; Kavurmacı, H.; Set, E., Ostrowski’s type inequalities for \((\alpha,m)-\) convex functions, Kyungpook Math. J., 50, 371-378 (2010) · Zbl 1204.26040 [11] Pachpatte, B. G., A note on Ostrowski and Grüss type discrete inequalities, Tamkang J. Math., 35, 1, 61-65 (2004) · Zbl 1056.26012 [12] Sarıkaya, M. Z., On the Ostrowski type integral inequality, Acta Math. Univ. Comenianae, LXXIX, 1, 129-134 (2010) · Zbl 1212.26058 [13] E. Set, M.E. Özdemir, M.Z. Sarıkaya, New inequalities of Ostrowski’s type for \(s\) arXiv:1005.0702v1; E. Set, M.E. Özdemir, M.Z. Sarıkaya, New inequalities of Ostrowski’s type for \(s\) arXiv:1005.0702v1 · Zbl 1299.26026 [14] Ujević, N., Sharp inequalities of Simpson type and Ostrowski type, Comput. Math. Appl., 48, 145-151 (2004) · Zbl 1063.41023 [15] Lü, Zhongxue, On sharp inequalities of Simpson type and Ostrowski type in two independent variables, Comput. Math. Appl., 56, 2043-2047 (2008) · Zbl 1165.26334 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.