Green, Ben; Tao, Terence An equivalence between inverse sumset theorems and inverse conjectures for the \(U^{3}\) norm. (English) Zbl 1229.11132 Math. Proc. Camb. Philos. Soc. 149, No. 1, 1-19 (2010). Let \(A\) be a finite subset of some ambient abelian group \(G\). \(A\) is said to be a \(K\)-approximate group if \(A\) is symmetric and if the sumset \(A+A\) is covered by \(K\) translates of \(A\). Let \(A\) and \(B\) be two sets in \(G\), and \(K\geq 1\). \(B\) is said to \(K\)-control \(A\) if \(|B|\leq K|A|\) and if there is some set \(X\) in \(G\) with \(|X|\leq K\) and such that \(A\subseteq B+X\).The authors first recall some results and conjectures in this area and then prove that some of these conjectures are equivalent.Conjecture 1.5 (Polynomial Freiman-Ruzsa over \(\mathbb{F}_2^{\infty}\)). Suppose that \(A \subset \mathbb{F}_2^{\infty}\) is a \(K\)-approximate group. Then \(A\) is \(K^C\)-controlled by a finite subgroup. Here \(C\) denotes some positive constant.Conjecture 1.6 states a “weak” polynomial version over \(\mathbb{Z}\): Suppose \(A \subset \mathbb{Z}\) is a \(K\)-approximate group. Then \(A\) is \(e^{K^{o(1)}}\)-controlled by a symmetric generalized arithmetic progression with dimension \(d\leq K^{o(1)}\).The authors then turn to a – seemingly – different topic: Let \(f: G \rightarrow \mathbb{C}\). One says \(f\) \(\delta\)-correlates with another function \(F: G \rightarrow \mathbb{C}\) if the inner product \(\langle f,F\rangle := \mathbb{E}_{x \in G} f(x) \overline{F(x)}\) is at least \(\delta\).Let \(U^3(G)\) denote the Gowers \(U^3\)-norm. A function \(f:G \rightarrow \mathbb{C}\) is called a \(K\)-approximate quadratic if \(\|f\|_{\infty} \leq 1\) and \(\|f\|_{U^3(G)} \geq 1/K\).Conjecture 1.10 (Polynomial Gowers inverse conjecture over \(\mathbb{F}_2^{n}\)): Suppose \(f: \mathbb{F}_2^{n} \rightarrow \mathbb{C}\) is a \(K\)-approximate quadratic. Then \(f\) \(K^{-C}\) correlates with a quadratic phase \((-1)^{\psi}\).Conjecture 1.11 is the “weak” version over \(\mathbb{Z}/N \mathbb{Z}\): Suppose that \(f:\mathbb{Z}/N \mathbb{Z} \rightarrow \mathbb{C}\) is a \(K\)-approximate quadratic. Then \(f\) \(\exp(-K^{o(1)})\)-correlates with an elementary 2-step nilsequence \(F(g^n\, x_0)\), where \(F:G/\Gamma \rightarrow \mathbb{C}\) is Lipschitz of order at most \(\exp(K^{o(1)}), g \in G, x_0 \in G/\Gamma\) and \(G/\Gamma\) is an elementary 2-step nilsystem of dimension at most \(K^{o(1)}\).The authors then prove: Conjectures 1.5 and 1.10 are equivalent. (This was independently proved by Shachar Lovett.) Also, the authors prove that Conjectures 1.6 and 1.11 are equivalent. Reviewer: Christian Elsholtz (Graz) Cited in 1 ReviewCited in 12 Documents MSC: 11P70 Inverse problems of additive number theory, including sumsets 11B30 Arithmetic combinatorics; higher degree uniformity Keywords:polynomial Freiman-Ruzsa conjecture; polynomial Gowers inverse conjecture × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] DOI: 10.1007/s00493-008-2271-7 · Zbl 1254.11017 · doi:10.1007/s00493-008-2271-7 [2] DOI: 10.1112/S0024609305018102 · Zbl 1155.11307 · doi:10.1112/S0024609305018102 [3] DOI: 10.1007/s00039-001-0332-9 · Zbl 1028.11005 · doi:10.1007/s00039-001-0332-9 [4] Ruzsa, Astérisque 258 pp 323– (1999) [5] DOI: 10.1007/s000390050065 · Zbl 0907.11005 · doi:10.1007/s000390050065 [6] Ruzsa, Sums of finite sets, Number Theory (1996) · Zbl 0869.11011 [7] DOI: 10.1007/BF02454387 · Zbl 0761.11005 · doi:10.1007/BF02454387 [8] Freĭman, Translations of Mathematical Monographs pp 108– (1973) [9] DOI: 10.1007/BF01876039 · Zbl 0816.11008 · doi:10.1007/BF01876039 [10] Davenport, Graduate Texts in Math. 74 (2000) [11] DOI: 10.1215/S0012-7094-02-11331-3 · Zbl 1035.11048 · doi:10.1215/S0012-7094-02-11331-3 [12] DOI: 10.1007/s11511-007-0015-y · Zbl 1137.37005 · doi:10.1007/s11511-007-0015-y [13] DOI: 10.1007/s00222-004-0428-6 · Zbl 1087.28007 · doi:10.1007/s00222-004-0428-6 [14] Green, Proc. Edinburgh Math. Soc. 51 pp 73– [15] Green, Ann. Inst. 58 pp 1863– (2008) · Zbl 1160.11017 · doi:10.5802/aif.2401 [16] Gowers, GAFA pp 79– (2000) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.