×

Fractional variational iteration method and its application. (English) Zbl 1237.34007

Summary: Fractional differential equations have been investigated by variational iteration method. However, the previous works avoid the term of fractional derivative and handle them as a restricted variation. We propose herein a fractional variational iteration method with modified Riemann-Liouville derivative which is more efficient to solve the fractional differential equations.

MSC:

34A08 Fractional ordinary differential equations
35R11 Fractional partial differential equations
26A33 Fractional derivatives and integrals
39B12 Iteration theory, iterative and composite equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] He, J. H., Comput. Methods Appl. Mech. Eng., 167, 1-2, 57 (1998) · Zbl 0942.76077
[2] He, J. H., Comput. Methods Appl. Mech. Eng., 167, 1-2, 69 (1998)
[3] He, J. H., Int. J. Nonlinear Mech., 34, 4, 699 (1999) · Zbl 1342.34005
[4] He, J. H., Appl. Math. Comput., 114, 2-3, 115 (2000)
[5] Wazwaz, A. M., Comput. Math. Appl., 41, 10-11, 1237 (2001) · Zbl 0983.65090
[6] Draganescu, G. E.; Capalnasan, V., Int. J. Nonlinear Sci., 4, 3, 219 (2003)
[7] Draganescu, G. E.; Cofan, N.; Rujan, D. L., J. Optoelectron. Adv. Mater., 7, 2, 877 (2005)
[8] Abdou, M. A.; Soliman, A. A., Physica D, 211, 1-2, 1 (2005) · Zbl 1084.35539
[9] Abdou, M. A.; Soliman, A. A., J. Comput. Appl. Math., 181, 2, 245 (2005) · Zbl 1072.65127
[10] Abulwafa, E. M.; Abdou, M. A.; Mahmoud, A. A., Chaos Solitons Fractals, 29, 2, 313 (2006) · Zbl 1101.82018
[11] Soliman, A. A., Math. Comput. Simulat., 70, 2, 119 (2005) · Zbl 1152.65467
[12] Momani, S.; Odibat, Z., Phys. Lett. A, 355, 4-5, 271 (2006) · Zbl 1378.76084
[13] Odibat, Z. M.; Momani, S., Int. J. Nonlinear Sci., 7, 1, 27 (2006) · Zbl 1401.65087
[14] He, J. H.; Wu, G. C.; Austin, F., Nonlinear Sci. Lett. A, 1, 1, 1 (2010)
[15] Jumarie, G., Int. J. Syst. Sci., 6, 1113 (1993)
[16] Jumarie, G., Math. Comput. Model., 44, 231 (2006) · Zbl 1130.92043
[17] Jumarie, G., Appl. Math. Lett., 22, 1659 (2009) · Zbl 1181.44001
[18] Jumarie, G., Comput. Math. Appl., 51, 1367 (2006) · Zbl 1137.65001
[19] Wu, G. C.; He, J. H., Nonlinear Sci. Lett. A, 1, 3, 281 (2010)
[20] Roman, H. E.; Alemany, P. A., J. Phys. A - Math. Gen., 27, 3407 (1994) · Zbl 0827.60057
[21] Fujita, Y., Osaka J. Math., 27, 2, 309 (1990) · Zbl 0790.45009
[22] Fujita, Y., Osaka J. Math., 27, 4, 797 (1990) · Zbl 0796.45010
[23] Oldham, K. B.; Spanier, J., The Fractional Calculus (1999), Academic Press: Academic Press New York · Zbl 0428.26004
[24] Gorenflo, R.; Mainardi, F., Fractional Calculus Appl. Anal., 1, 167 (1998) · Zbl 0946.60039
[25] Tadjeran, C.; Meerschaert, M. M.; Scheffler, H. P., J. Comput. Phys., 213, 205 (2006) · Zbl 1089.65089
[26] Mainardi, F., Chaos Solitons Fractals, 7, 9, 1461 (1996) · Zbl 1080.26505
[27] Mainardi, F., Appl. Math. Lett., 9, 6, 23 (1996) · Zbl 0879.35036
[28] Agarwal, O. P., Nonlinear Dynam., 29, 145 (2002)
[29] Al-Khaled, K.; Momani, S., Appl. Math. Comput., 165, 2, 473 (2005) · Zbl 1071.65135
[30] Ozdemir, N.; Karadeniz, D., Phys. Lett. A, 372, 38, 5968 (2008) · Zbl 1223.26012
[31] Das, S., Comput. Math. Appl., 57, 3, 483 (2009) · Zbl 1165.35398
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.