×

Morita equivalence and characteristic classes of star products. (English) Zbl 1237.53080

Authors’ abstract: “This paper deals with two aspects of the theory of characteristic classes of star products: firstly, on an arbitrary Poisson manifold, we describe Morita equivalent star products in terms of their Kontsevich classes; secondly, on symplectic manifolds, we describe the relationship between Kontsevich’s and Fedosov’s characteristic classes of star products.”

MSC:

53D55 Deformation quantization, star products
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Bayen F., Y.) 111 pp 61– (1978)
[2] Berezin F. A., Izv. Akad. Nauk. 38 pp 1116– (1974)
[3] DOI: 10.1088/0264-9381/14/1A/008 · Zbl 0881.58021
[4] DOI: 10.1016/j.aim.2007.02.002 · Zbl 1125.53069
[5] DOI: 10.1155/S1073792802108014 · Zbl 1031.53120
[6] Bursztyn H., Lett. Math. Phys. 54 pp 349– (2001)
[7] DOI: 10.1007/s002200200657 · Zbl 1036.53068
[8] DOI: 10.1023/B:KTHE.0000021354.07931.64 · Zbl 1054.53101
[9] DOI: 10.1215/S0012-7094-02-11524-5 · Zbl 1037.53063
[10] Chen P., Math. Res. Lett. 12 pp 5– (2005) · Zbl 1155.53338
[11] DOI: 10.2307/2001258 · Zbl 0850.70212
[12] Deligne P., S.) 1 pp 667– (1995)
[13] DOI: 10.1007/BF00402248 · Zbl 0526.58023
[14] DOI: 10.1016/j.aim.2004.02.001 · Zbl 1116.53065
[15] Dolgushev V. A., S.) 14 pp 199– (2009)
[16] DOI: 10.4171/JNCG/1 · Zbl 1144.18007
[17] Drinfeld V. G., Leningrad Math. J. 2 pp 829– (1991)
[18] Fedosov B. V., J. Di{\currency}. Geom. 40 pp 213– (1994)
[19] DOI: 10.1215/S0012-7094-04-12733-2 · Zbl 1106.53055
[20] DOI: 10.1023/A:1026577414320 · Zbl 0983.53065
[21] Gelfand I. M., Math. Ser. 34 pp 322– (1970)
[22] Gelfand I. M., Soviet Math. Dokl. 12 pp 1367– (1971)
[23] DOI: 10.2307/1970343 · Zbl 0131.27302
[24] DOI: 10.1215/S0012-7094-02-11136-3 · Zbl 1100.32008
[25] DOI: 10.4007/annals.2009.170.271 · Zbl 1246.17025
[26] DOI: 10.1007/BF02699127 · Zbl 0678.53059
[27] DOI: 10.1515/form.2003.032 · Zbl 1081.16014
[28] DOI: 10.1093/qmath/hag025
[29] DOI: 10.1016/S0550-3213(00)00363-1 · Zbl 0984.81167
[30] DOI: 10.1023/A:1021244731214 · Zbl 1036.53070
[31] DOI: 10.1023/B:MATH.0000027508.00421.bf · Zbl 1058.53065
[32] DOI: 10.1023/A:1017957408559 · Zbl 1081.14500
[33] Lichnerowicz A., J. Di{\currency}. Geom. 12 pp 253– (1977)
[34] Morita K., Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 6 pp 83– (1958)
[35] DOI: 10.1007/BF02099427 · Zbl 0887.58050
[36] DOI: 10.1016/0001-8708(91)90057-E · Zbl 0734.58011
[37] DOI: 10.2307/1970725 · Zbl 0191.53702
[38] DOI: 10.1088/1126-6708/1999/09/032 · Zbl 0957.81085
[39] DOI: 10.1023/A:1023077126186 · Zbl 1037.53064
[40] Severa P., Progr. Theoret. Phys. 144 pp 145– (2001)
[41] DOI: 10.1090/S0002-9939-98-04210-5 · Zbl 0894.16005
[42] Weinstein A., J. Di{\currency}. Geom. 18 pp 523– (1983)
[43] DOI: 10.1007/s11856-007-0085-8 · Zbl 1143.14002
[44] DOI: 10.1142/S0217732301003693
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.