Ginchev, Ivan; Guerraggio, Angelo Second-order conditions for constrained vector optimization problems with \(\ell \)-stable data. (English) Zbl 1237.90221 Optimization 60, No. 1-3, 179-199 (2011). Summary: We consider the constrained vector optimization problem min\(_C f(x), g(x) \in -K\), where \(C \subset \mathbb R^m\) and \(K \subset \mathbb R^p\) are pointed closed convex cones, and \(f : \mathbb R^n \rightarrow \mathbb R^m\) and \(g : \mathbb R^n \rightarrow \mathbb R^p\) are \(\ell \)-stable at a point \(x^{0} \in \mathbb R^n\). We give second-order sufficient and necessary conditions \(x^{0}\) to be an \(i\)-minimizer (isolated minimizer) of order two, and second-order necessary conditions \(x^{0}\) to be a \(w\)-minimizer (weakly efficient point). The obtained results improve the ones of D. Bednařík and K. Pastor [Math. Program. 113, No. 2 (A), 283–298 (2008; Zbl 1211.90276)] (from unconstrained scalar problems to constrained vector problems) and I. Ginchev, A. Guerraggio and M. Rocca [Math. Program. 104, No. 2–3 (B), 389–405 (2005; Zbl 1102.90058)] (from problems with \(C^{1,1}\) data to problems with \(\ell \)-stable data). In fact, the former paper introduces and studies the notion of a \(\ell \)-stable at a point scalar function, and shows some possible applications. Here we generalize this notion to vector functions. Cited in 4 Documents MSC: 90C29 Multi-objective and goal programming 90C30 Nonlinear programming 90C46 Optimality conditions and duality in mathematical programming 49J52 Nonsmooth analysis Keywords:vector optimization; \(\ell \)-stable functions; second-order conditions Citations:Zbl 1211.90276; Zbl 1102.90058 PDF BibTeX XML Cite \textit{I. Ginchev} and \textit{A. Guerraggio}, Optimization 60, No. 1--3, 179--199 (2011; Zbl 1237.90221) Full Text: DOI References: [1] Aubin J-P, Set-valued Analysis (1990) [2] DOI: 10.1137/S0363012903424174 · Zbl 1089.49023 [3] DOI: 10.1007/s10107-007-0094-8 · Zbl 1211.90276 [4] DOI: 10.1016/j.na.2007.09.006 · Zbl 1146.49017 [5] DOI: 10.1016/j.na.2008.03.011 · Zbl 1158.49022 [6] DOI: 10.1016/j.aml.2009.01.019 · Zbl 1162.49018 [7] DOI: 10.1007/BF01585095 · Zbl 0488.90059 [8] DOI: 10.1137/0328045 · Zbl 0714.49020 [9] Diewert WE, Generalized Concavity in Optimization and Economics pp 51– (1981) [10] DOI: 10.1007/BF00425960 · Zbl 0864.49012 [11] DOI: 10.1007/0-387-24276-7_27 [12] DOI: 10.1007/s10107-005-0621-4 · Zbl 1102.90058 [13] DOI: 10.1007/s10492-006-0002-1 · Zbl 1164.90399 [14] DOI: 10.1023/A:1017519922669 · Zbl 1038.49027 [15] DOI: 10.1023/A:1022114319999 · Zbl 1030.90115 [16] DOI: 10.1007/BF01442169 · Zbl 0542.49011 [17] DOI: 10.1016/S0022-247X(03)00337-8 · Zbl 1033.90120 [18] DOI: 10.1080/02331938808843333 · Zbl 0647.49014 [19] Liu L, J. Syst. Sci. Math. Sci. 4 pp 128– (1991) [20] DOI: 10.1023/A:1023068513188 · Zbl 0903.90152 [21] DOI: 10.1023/A:1022272728208 · Zbl 0995.90085 [22] Mangasarian OL, Classics in Applied Mathematics 10 (1994) [23] DOI: 10.1080/01630569308816543 · Zbl 0804.90114 [24] DOI: 10.1080/02331939208843851 · Zbl 0814.49012 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.