Bunte, Kerstin; Biehl, Michael; Hammer, Barbara A general framework for dimensionality-reducing data visualization mapping. (English) Zbl 1238.68117 Neural Comput. 24, No. 3, 771-804 (2012). Summary: In recent years, a wealth of dimension-reduction techniques for data visualization and preprocessing has been established. Nonparametric methods require additional effort for out-of-sample extensions, because they provide only a mapping of a given finite set of points. In this letter, we propose a general view on nonparametric dimension reduction based on the concept of cost functions and properties of the data. Based on this general principle, we transfer nonparametric dimension reduction to explicit mappings of the data manifold such that direct out-of-sample extensions become possible. Furthermore, this concept offers the possibility of investigating the generalization ability of data visualization to new data points. We demonstrate the approach based on a simple global linear mapping, as well as prototype-based local linear mappings. In addition, we can bias the functional form according to given auxiliary information. This leads to explicit supervised visualization mappings with discriminative properties comparable to state-of-the-art approaches. Cited in 12 Documents MSC: 68T05 Learning and adaptive systems in artificial intelligence Software:PRMLT; LVQ_PAK × Cite Format Result Cite Review PDF Full Text: DOI References: [1] DOI: 10.1145/1851476.1851501 · doi:10.1145/1851476.1851501 [2] DOI: 10.1162/153244303321897690 · Zbl 1084.68549 · doi:10.1162/153244303321897690 [3] DOI: 10.1162/089976600300014980 · doi:10.1162/089976600300014980 [4] DOI: 10.1162/089976603321780317 · Zbl 1085.68119 · doi:10.1162/089976603321780317 [5] Bishop C., Pattern recognition and machine learning (2007) · Zbl 1107.68072 [6] DOI: 10.1162/089976698300017953 · doi:10.1162/089976698300017953 [7] Brand M., Charting a manifold (2003) [8] DOI: 10.1016/j.neucom.2009.11.017 · doi:10.1016/j.neucom.2009.11.017 [9] Carreira-Perpiñán M. Á., 27th Int. Conf. Machine Learning (ICML 2010) pp 167– (2010) [10] DOI: 10.1016/j.neunet.2006.05.018 · Zbl 1102.68542 · doi:10.1016/j.neunet.2006.05.018 [11] DOI: 10.1109/TSMCB.2005.850151 · doi:10.1109/TSMCB.2005.850151 [12] Goldberger J., Advances in neural information processing systems, 17 pp 513– (2004) [13] DOI: 10.1162/153244303322753616 · Zbl 1102.68556 · doi:10.1162/153244303322753616 [14] He X., 2005. Tenth IEEE International Conference on Computer Vision, 2005 pp 1208– (2005) [15] Hinton G., Advances in neural information processing systems, 15 pp 833– (2003) [16] DOI: 10.1162/neco.2007.19.9.2536 · Zbl 1143.68543 · doi:10.1162/neco.2007.19.9.2536 [17] DOI: 10.1109/72.935102 · doi:10.1109/72.935102 [18] DOI: 10.1007/978-3-540-71080-6_6 · doi:10.1007/978-3-540-71080-6_6 [19] DOI: 10.1007/978-3-642-97610-0 · doi:10.1007/978-3-642-97610-0 [20] Kohonen T., LVQ PAK: The learning vector quantization program package (1996) [21] DOI: 10.1007/978-0-387-39351-3 · Zbl 1128.68024 · doi:10.1007/978-0-387-39351-3 [22] Lee J. A., 16th European Symposium on Artificial Neural Networks pp 49– (2008) [23] DOI: 10.1016/j.neucom.2008.12.017 · doi:10.1016/j.neucom.2008.12.017 [24] DOI: 10.1016/j.patcog.2006.05.033 · Zbl 1103.68772 · doi:10.1016/j.patcog.2006.05.033 [25] Martinetz T., Artificial Neural Networks 1 pp 397– (1991) [26] Memisevic R., Advances in neural information processing systems, 17 pp 913– (2005) [27] Mokbel B., Neural Information Processing Systems Workshop on Challenges of Data Visualization (2010) [28] DOI: 10.1016/j.neucom.2003.09.014 · doi:10.1016/j.neucom.2003.09.014 [29] DOI: 10.1016/j.neunet.2004.06.008 · Zbl 1101.68783 · doi:10.1016/j.neunet.2004.06.008 [30] DOI: 10.1126/science.290.5500.2323 · doi:10.1126/science.290.5500.2323 [31] DOI: 10.1109/T-C.1969.222678 · doi:10.1109/T-C.1969.222678 [32] DOI: 10.1162/neco.2009.11-08-908 · Zbl 1192.68537 · doi:10.1162/neco.2009.11-08-908 [33] Song L., Advances in neural information processing systems 20 (2008) [34] DOI: 10.1109/TNN.2008.2000807 · doi:10.1109/TNN.2008.2000807 [35] Teh Y. W., Advances in neural information processing systems, 15 pp 841– (2003) [36] DOI: 10.1126/science.290.5500.2319 · doi:10.1126/science.290.5500.2319 [37] DOI: 10.1007/BF02288916 · Zbl 0049.37603 · doi:10.1007/BF02288916 [38] van der Maaten L. J. P., Proceedings of the 12th International Conference on Artificial Intelligence and Statistics (AI-STATS) pp 384– (2009) [39] van der Maaten L.J.P., Journal of Machine Learning Research 9 pp 2579– (2008) [40] van der Maaten L.J.P., Dimensionality reduction: A comparative review (2009) [41] DOI: 10.1137/1038003 · Zbl 0845.65023 · doi:10.1137/1038003 [42] Venna J., Journal of Machine Learning Research 11 pp 451– (2010) [43] Weinberger K. Q., Proceedings of the 21st National Conference on Artificial Intelligence (2006) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.