Modular algorithms for computing a generating set of the syzygy module. (English) Zbl 1239.13037

Gerdt, Vladimir P. (ed.) et al., Computer algebra in scientific computing. 11th international workshop, CASC 2009, Kobe, Japan, September 13–17, 2009. Proceedings. Berlin: Springer (ISBN 978-3-642-04102-0/pbk). Lecture Notes in Computer Science 5743, 259-268 (2009).
Summary: We present two modular algorithms for computing a generating set of the syzygy module of a given sequence of elements in \(R^{l}\), where \(R\) is a polynomial ring or a Weyl algebra over \(\mathbb{Q}\).
For the entire collection see [Zbl 1175.68009].


13P10 Gröbner bases; other bases for ideals and modules (e.g., Janet and border bases)
68W30 Symbolic computation and algebraic computation


Full Text: DOI


[1] Adams, W., Loustaunau, P.: An Introduction to Gröbner Bases. Graduate Studies in Mathematics, vol. 3. AMS (1994) · Zbl 0803.13015
[2] Arnold, E.: Modular Algorithms for computing Gröber bases. J. Symb. Comp. 35(4), 403–419 (2003) · Zbl 1046.13018
[3] Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry. In: GTM, vol. 185, Springer, Heidelberg (2005)
[4] Examples in the web page of Janet Basis, http://invo.jinr.ru/examples.phtml
[5] Greuel, G.-M., Pfister, G.: A Singular Introduction to Commutative Algebra. Springer, Heidelberg (2007), http://www.singular.uni-kl.de/ · Zbl 1133.13001
[6] Kreuzer, M., Robbiano, L.: Computational Commutative Algebra, vol. 1. Springer, Heidelberg (2008) · Zbl 0956.13008
[7] La Scala, R., Stillman, M.: Strategies for computing minimal free resolutions. J. Symb. Comp. 26, 409–431 (1998) · Zbl 1034.68716
[8] Macaulay 2 home page, http://www.math.uiuc.edu/Macaulay2/
[9] Möller, H.M., Mora, T., Traverso, C.: Gröber Bases Computation Using Syzygies. In: Proc. ISSAC 1992, pp. 320–328. ACM Press, New York (1992) · Zbl 0925.13010
[10] Mora, T.: Solving Polynomial Equation Systems II, Macaulay’s pradigm and Gróber Technology. In: Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge (2005)
[11] Noro, M., Yokoyama, K.: A Modular Method to Compute the Rational Univariate Representation of Zero-Dimensional Ideals. J. Symb. Comp. 28(1), 243–263 (1999) · Zbl 0945.13010
[12] Risa/Asir: A computer algebra system, http://www.math.kobe-u.ac.jp/Asir/asir.html
[13] Saito, M., Sturmfels, B., Takayama, N.: Gröber deformations of hypergeometric differential equations. Algorithms and Computation in Mathematics 6 (2000) · Zbl 0946.13021
[14] Traverso, C.: Gröber trace algorithms. In: Gianni, P. (ed.) ISSAC 1988. LNCS, vol. 358, pp. 125–138. Springer, Heidelberg (1989)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.